
EuroBSDcon 2017

System	Performance	
Analysis	Methodologies	

Brendan	Gregg	
Senior	Performance	Architect	

ERASABLE	
MEMORY	

CORE	SET	
AREA	

VAC	SETS	

FIXED	
MEMORY	

Apollo Lunar Module Guidance Computer
performance analysis

Background	

History	
•  System	Performance	Analysis	up	to	the	'90s:	

–  Closed	source	UNIXes	and	applicaNons	
–  Vendor-created	metrics	and	performance	tools	
–  Users	interpret	given	metrics	

•  Problems	
–  Vendors	may	not	provide	the	best	metrics	
–  ORen	had	to	infer,	rather	than	measure	
–  Given	metrics,	what	do	we	do	with	them?	

$ ps -auxw
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 11 99.9 0.0 0 16 - RL 22:10 22:27.05 [idle]
root 0 0.0 0.0 0 176 - DLs 22:10 0:00.47 [kernel]
root 1 0.0 0.2 5408 1040 - ILs 22:10 0:00.01 /sbin/init --
[…]

Today	
1.  Open	source	

–  OperaNng	systems:		Linux,	BSD,	etc.	
–  ApplicaNons:	source	online	(Github)	

2.  Custom	metrics	
–  Can	patch	the	open	source,	or,	
–  Use	dynamic	tracing	(open	source	helps)	

3.  Methodologies	
–  Start	with	the	quesNons,	then	make	metrics	to	answer	them	
–  Methodologies	can	pose	the	quesNons	

		

Biggest	problem	with	dynamic	tracing	has	been	what	to	do	with	it.	
Methodologies	guide	your	usage.	

Crystal	Ball	Thinking	

An2-Methodologies	

Street	Light	An2-Method	
1.  Pick	observability	tools	that	are	

–  Familiar	
–  Found	on	the	Internet	
–  Found	at	random	

2.  Run	tools	
3.  Look	for	obvious	issues	

Drunk	Man	An2-Method	
•  Drink	Tune	things	at	random	unNl	the	problem	goes	away	
	

Blame	Someone	Else	An2-Method	
1.  Find	a	system	or	environment	component	you	are	not	

responsible	for	
2.  Hypothesize	that	the	issue	is	with	that	component	
3.  Redirect	the	issue	to	the	responsible	team	
4. When	proven	wrong,	go	to	1	

Traffic	Light	An2-Method	
1.  Turn	all	metrics	into	traffic	lights	
2.  Open	dashboard	
3.  Everything	green?	No	worries,	mate.	
		

•  Type	I	errors:	red	instead	of	green	
–  team	wastes	Nme	

•  Type	II	errors:	green	instead	of	red	
–  performance	issues	undiagnosed	
–  team	wastes	more	Nme	looking	elsewhere	

		

Traffic	lights	are	suitable	for	objec2ve	metrics	(eg,	errors),	not	
subjec2ve	metrics	(eg,	IOPS,	latency).	

Methodologies	

Performance	Methodologies	
System	Methodologies:	

–  Problem	statement	method	
–  FuncNonal	diagram	method	
–  Workload	analysis	
–  Workload	characterizaNon	
–  Resource	analysis	
–  USE	method	
–  Thread	State	Analysis	
–  On-CPU	analysis	
–  CPU	flame	graph	analysis	
–  Off-CPU	analysis	
–  Latency	correlaNons	
–  Checklists	
–  StaNc	performance	tuning	
–  Tools-based	methods	

…	

•  For	system	engineers:	
–  ways	to	analyze	unfamiliar	systems	and	

applicaNons	

•  For	app	developers:	
–  guidance	for	metric	and	dashboard	design	

		

Collect	your	
own	toolbox	of	
methodologies	

Problem	Statement	Method	
1. What	makes	you	think	there	is	a	performance	problem?		
2.  Has	this	system	ever	performed	well?		
3. What	has	changed	recently?	

–  soRware?	hardware?	load?	

4.  Can	the	problem	be	described	in	terms	of	latency?	
–  or	run	Nme.	not	IOPS	or	throughput.		

5.  Does	the	problem	affect	other	people	or	apps?	
6. What	is	the	environment?	

–  soRware,	hardware,	instance	types?	versions?	config?		

FuncNonal	Diagram	Method	
1.  Draw	the	funcNonal	diagram	
2.  Trace	all	components	in	the	data	path	
3.  For	each	component,	check	performance	

Breaks	up	a	bigger	problem	into	
smaller,	relevant	parts	
	
Eg,	imagine	throughput	between	the	UCSB	360	and	the	
UTAH	PDP10	was	slow…	 ARPA	Network	1969	

Workload	Analysis	
•  Begin	with	applicaNon	metrics	&	context	
•  A	drill-down	methodology	
•  Pros:	

–  ProporNonal,	accurate	metrics	
–  App	context	

•  Cons:	
–  Difficult	to	dig	from	app	to	resource	
–  App	specific	

ApplicaNon	
	
	System	Libraries	

System	Calls	

Kernel	

Hardware	

Workload	

Analysis	

Workload	CharacterizaNon	
•  Check	the	workload,	not	resulNng	performance	

	

•  Eg,	for	CPUs:	
1.  	Who:	which	PIDs,	programs,	users		
2.  	Why:	code	paths,	context	
3.  	What:	CPU	instrucNons,	cycles	
4.  	How:	changing	over	Nme	

Target	Workload	

Workload	CharacterizaNon:	CPUs	

Who

How What

Why

top CPU	profile	
CPU	flame	graphs	

monitoring	 PMCs	
CPI	flame	graph	

CPU	profile	
CPU	flame	graphs	

PMCs	
CPI	flame	graph	

Most	companies	and	monitoring	products	today	

Who

How What

Why

top

monitoring	

We	can	do	
bejer	

Resource	Analysis	
•  Typical	approach	for	system	performance	analysis:	

begin	with	system	tools	&	metrics	
•  Pros:	

–  Generic	
–  Aids	resource	perf	tuning	

•  Cons:	
–  Uneven	coverage	
–  False	posiNves	

ApplicaNon	
	
	System	Libraries	

System	Calls	

Kernel	

Hardware	

Workload	

Analysis	

The	USE	Method	
•  For every resource, check:

1.  Utilization: busy time
2.  Saturation: queue length or time
3.  Errors: easy to interpret (objective)

Starts with the questions, then finds the tools
Eg, for hardware, check every resource incl. busses:

http://www.brendangregg.com/USEmethod/use-rosetta.html

http://www.brendangregg.com/USEmethod/use-freebsd.html

ERASABLE	
MEMORY	

CORE	SET	
AREA	

VAC	SETS	

FIXED	
MEMORY	

Apollo Lunar Module Guidance Computer
performance analysis

USE	Method:	SoRware	
•  USE	method	can	also	work	for	soRware	resources	

–  kernel	or	app	internals,	cloud	environments	
–  small	scale	(eg,	locks)	to	large	scale	(apps).	Eg:	

•  Mutex	locks:	
–  uNlizaNon	à	lock	hold	Nme	
–  saturaNon	à	lock	contenNon	
–  errors	à	any	errors	

•  EnNre	applicaNon:	
–  uNlizaNon	à	percentage	of	worker	threads	busy	
–  saturaNon	à	length	of	queued	work	
–  errors	à	request	errors	

Resource	
UNlizaNon	

(%)	X	

RED	Method	

•  For	every	service,	check	these	are	within	SLO/A:	
1.  	Request	rate	
2.  	Error	rate	
3.  	Dura=on	(distribuNon)	

		

Another	exercise	in	posing	quesNons		from	
funcNonal	diagrams	

	
	
	
By	Tom	Wilkie:	hjp://www.slideshare.net/weaveworks/monitoring-microservices	

Load	
Balancer	

Web	
Proxy	

Web	Server	

User	
Database	

Payments	
Server	

Asset	
Server	

Metrics	
Database	

Thread	State	Analysis	

IdenNfy	&	quanNfy	Nme	in	states	

Narrows	further	analysis	to	state	

Thread	states	are	applicable	to	all	apps	

State	transiNon	diagram	

TSA:	eg,	OS	X	
Instruments:	Thread	States	

TSA:	eg,	RSTS/E	

RSTS:	DEC	OS	from	the	1970's	
	
TENEX	(1969-72)	also	had	Control-T	
for	job	states	

TSA:	Finding	FreeBSD	Thread	States	
dtrace -ln sched:::
 ID PROVIDER MODULE FUNCTION NAME
56622 sched kernel none preempt
56627 sched kernel none dequeue
56628 sched kernel none enqueue
56631 sched kernel none off-cpu
56632 sched kernel none on-cpu
56633 sched kernel none remain-cpu
56634 sched kernel none surrender
56640 sched kernel none sleep
56641 sched kernel none wakeup
[…]

struct thread {
[…]
 enum {
 TDS_INACTIVE = 0x0,
 TDS_INHIBITED,
 TDS_CAN_RUN,
 TDS_RUNQ,
 TDS_RUNNING
 } td_state;
[…]
#define KTDSTATE(td) \
 (((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep" : \
 ((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" : \
 ((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" : \
 ((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" : \
 ((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")

probes	

thread	flags	

TSA:	FreeBSD	
./tstates.d
Tracing scheduler events... Ctrl-C to end.
^C
Time (ms) per state:
COMM PID CPU RUNQ SLP SUS SWP LCK IWT YLD
irq14: ata0 12 0 0 0 0 0 0 0 0
irq15: ata1 12 0 0 0 0 0 0 9009 0
swi4: clock (0) 12 0 0 0 0 0 0 9761 0
usbus0 14 0 0 8005 0 0 0 0 0
[...]
sshd 807 0 0 10011 0 0 0 0 0
devd 474 0 0 9009 0 0 0 0 0
dtrace 1166 1 4 10006 0 0 0 0 0
sh 936 2 22 5648 0 0 0 0 0
rand_harvestq 6 5 38 9889 0 0 0 0 0
sh 1170 9 0 0 0 0 0 0 0
kernel 0 10 13 0 0 0 0 0 0
sshd 935 14 22 5644 0 0 0 0 0
intr 12 46 276 0 0 0 0 0 0
cksum 1076 929 28 0 480 0 0 0 0
cksum 1170 1499 1029 0 0 0 0 0 0
cksum 1169 1590 1144 0 0 0 0 0 0
idle 11 5856 999 0 0 0 0 0 0

DTrace	proof	of	concept	

hjps://github.com/brendangregg/DTrace-tools/blob/master/sched/tstates.d		

On-CPU	Analysis	

1.  Split	into	user/kernel	states	

–  /proc,	vmstat(1)	
2.  Check	CPU	balance	

–  mpstat(1),	CPU	uNlizaNon	heat	map	
3.  Profile	soRware	

–  User	&	kernel	stack	sampling	(as	a	CPU	flame	graph)	
4.  Profile	cycles,	caches,	busses	

–  PMCs,	CPI	flame	graph	

CPU	UNlizaNon	
Heat	Map	

CPU	Flame	Graph	Analysis	

1.  Take	a	CPU	profile	
2.  Render	it	as	a	flame	graph	
3.  Study	largest	"towers"	first	
		

Discovers	issues	by	their	CPU	usage	
-  Directly:	CPU	consumers	
-  Indirectly:	iniNalizaNon	of	I/O,	locks,	Nmes,	...	

Narrows	target	of	study	

Flame	Graph	

CPU	Flame	Graphs:	FreeBSD	
•  Use	either	DTrace	or	pmcstat.	Eg,	kernel	CPU	with	DTrace:	

•  Both	user	&	kernel	CPU:	

git clone https://github.com/brendangregg/FlameGraph; cd FlameGraph
dtrace -n 'profile-99 /arg0/ { @[stack()] = count(); } tick-30s { exit(0); }' > stacks01
stackcollapse.pl < stacks01 | sed 's/kernel`//g' | ./flamegraph.pl > stacks01.svg

hjp://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html#DTrace		

dtrace -x ustackframes=100 -x stackframes=100 -n '
 profile-99 { @[stack(), ustack(), execname] = sum(1); }
 tick-30s,END { printa("%k-%k%s\n%@d\n", @); trunc(@); exit(0); }' > stacks02

Java	Mixed-Mode	CPU	Flame	Graph	

Java	

Kernel	
(C)	

JVM	
(C++)	

User	
(C)	

By sampling stack traces with:
•  -XX:+PreserveFramePointer
•  Java perf-map-agent

CPI	Flame	Graph:	BSD	
A CPU flame graph (cycles) colored using instructions/stall profile data
eg, using FreeBSD pmcstat:

red	==	instrucNons	
blue	==	stalls	

hjp://www.brendangregg.com/blog/2014-10-31/cpi-flame-graphs.html	

Off-CPU	Analysis	

Analyze	off-CPU	Nme	via	blocking	code	
path:	Off-CPU	flame	graph	
		

ORen	need	wakeup	code	paths	as	well…	

Off-CPU	Time	Flame	Graph:	FreeBSD	
file	read	

directory	read	

missing	symbols	(stripped)	

Stack	depth	Off-CPU	Nme	

seek	 readahead	 file	read	

tar	…	>	/dev/null	

readahead	

Off-CPU	Profiling:	FreeBSD	
#!/usr/sbin/dtrace -s
#pragma D option ustackframes=100
#pragma D option dynvarsize=32m

sched:::off-cpu /execname == "bsdtar"/ { self->ts = timestamp; }

sched:::on-cpu
/self->ts/
{

@[stack(), ustack(), execname] = sum(timestamp - self->ts);
self->ts = 0;

}

dtrace:::END
{

normalize(@, 1000000);
printa("%k-%k%s\n%@d\n", @);

}

offcpu.d	
Uses	DTrace	

Warning:	can	have	significant	overhead	
(scheduler	events	can	be	frequent)	

Change/remove	as	desired	
eg,	add	/curthread->td_state	<=	1/	to	exclude	preempt,	otherwise	sees	iCsw	

./offcpu.d > out.stacks
git clone https://github.com/brendangregg/FlameGraph; cd FlameGraph
stackcollapse.pl < ../out.stacks | sed 's/kernel`//g' | \
 ./flamegraph.pl --color=io --title="Off-CPU Flame Graph" --countname=ms > out.svg

Off-CPU	Time	Flame	Graph:	FreeBSD	 tar	…	|	gzip	

pipe	write	
file	read	 readahead	

Wakeup	Time	Flame	Graph:	FreeBSD	

Who did the wakeup:

waker	

wakee	

user-stack	

kernel-stack	

Wakeup	Profiling:	FreeBSD	
#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option ustackframes=100
#pragma D option dynvarsize=32m

sched:::sleep /execname == "bsdtar"/ { ts[curlwpsinfo->pr_addr] = timestamp; }

sched:::wakeup
/ts[arg0]/
{

this->delta = timestamp - ts[arg0];
@[args[1]->p_comm, stack(), ustack(), execname] = sum(this->delta);
ts[arg0] = 0;

}

dtrace:::END
{

normalize(@, 1000000);
printa("\n%s%k-%k%s\n%@d\n", @);

}

wakeup.d	
Uses	DTrace	

Warning:	can	have	significant	overhead	
(scheduler	events	can	be	frequent)	

Change/remove	as	desired	

Merging	Stacks	with	eBPF:	Linux	
Waker	task	

Waker	stack	

Blocked	stack	

Blocked	task	

Stack	
DirecNon	

Wokeup	

•  Using	enhanced	
Berkeley	Packet	Filter	
(eBPF)	to	merge	stacks	
in	kernel	context	

•  Not	available	on	BSD	
(yet)	

Ye	Olde	BPF	
Berkeley	Packet	Filter	

tcpdump host 127.0.0.1 and port 22 -d
(000) ldh [12]
(001) jeq #0x800 jt 2 jf 18
(002) ld [26]
(003) jeq #0x7f000001 jt 6 jf 4
(004) ld [30]
(005) jeq #0x7f000001 jt 6 jf 18
(006) ldb [23]
(007) jeq #0x84 jt 10 jf 8
(008) jeq #0x6 jt 10 jf 9
(009) jeq #0x11 jt 10 jf 18
(010) ldh [20]
(011) jset #0x1fff jt 18 jf 12
(012) ldxb 4*([14]&0xf)
(013) ldh [x + 14]
[...]

User-defined	bytecode	
executed	by	an	in-kernel	

sandboxed	virtual	machine	
	

Steven	McCanne	and	Van	Jacobson,	1993	

2	x	32-bit	registers	
&	scratch	memory	

OpNmizes	packet	filter	
performance	

Enhanced	BPF	
aka	eBPF	or	just	"BPF"	

Alexei	Starovoitov,	2014+	

10	x	64-bit	registers	
maps	(hashes)	

stack	traces	
ac=ons	

bcc/BPF	front-end	(C	&	Python)	

bcc	examples/tracing/bitehist.py	

Latency	CorrelaNons	

1. Measure	latency	histograms	at	
different	stack	layers	

2.  Compare	histograms	to	find	
latency	origin	

		

Even	bejer,	use	latency	heat	maps	
•  Match	outliers	based	on	both	latency	and	Nme	

Checklists:	eg,	BSD	Perf	Analysis	in	60s	
1.  		uptime
2.  		dmesg -a | tail
3.  		vmstat 1
4.  		vmstat -P
5.  		ps -auxw
6.  		iostat -xz 1
7.  		systat -ifstat
8.  		systat -netstat
9.  		top	
10.  		systat -vmstat

load	averages	
kernel	errors	
overall	stats	by	Nme	

CPU	balance	
process	usage	

disk	I/O	
network	I/O	

TCP	stats	
process	overview	
system	overview	

adapted	from	hjp://techblog.neylix.com/2015/11/linux-performance-analysis-in-60s.html	

1.	RPS,	CPU	 2.	Volume	

6.	Load	Avg	

3.	Instances	 4.	Scaling	

5.	CPU/RPS	

7.	Java	Heap	 8.	ParNew	

9.	Latency	 10.	99th	Nle	

Checklists:	eg,	Neylix	perfvitals	Dashboard	

StaNc	Performance	Tuning:	FreeBSD	

Tools-Based	Method:	FreeBSD	

Try	all	the	tools!	
May	be	an	anN-pajern	

Tools-Based	Method:	DTrace	FreeBSD	

Just	my	new	BSD	tools	

Other	Methodologies	
•  ScienNfic	method	
•  5	Why's	
•  Process	of	eliminaNon	
•  Intel's	Top-Down	Methodology	
•  Method	R	

What	You	Can	Do	

What	you	can	do	
1.  Know	what's	now	possible	on	modern	systems	

–  Dynamic	tracing:	efficiently	instrument	any	soRware	
–  CPU	faciliNes:	PMCs,	MSRs	(model	specific	registers)	
–  VisualizaNons:	flame	graphs,	latency	heat	maps,	…	

2.  Ask	quesNons	first:	use	methodologies	to	ask	them	
3.  Then	find/build	the	metrics	
4.  Build	or	buy	dashboards	to	support	methodologies	

Dynamic	Tracing:	Efficient	Metrics	

send	

receive	

tcpdump	

Kernel	

buffer	

file	system	

1.	read	
2.	dump	

Analyzer	 1.	read	
2.	process	
3.	print	

disks	

Old way: packet capture

New way: dynamic tracing

Tracer	 1.	configure	
2.	read	

tcp_retransmit_skb()	

Eg, tracing TCP retransmits

Dynamic	Tracing:	Instrument	Most	SoRware	
My	Solaris/DTrace	tools	(many	already	work	on	BSD/DTrace):	

Performance	Monitoring	Counters	
Eg,	BSD	PMC	groups	for	Intel	Sandy	Bridge:	

VisualizaNons	
Eg,	Disk	I/O	latency	as	a	heat	map,	quanNzed	in	kernel:	

Post	processing	the	output	of	my	iosnoop	tool:	www.brendangregg.com/HeatMaps/latency.html		

Summary	
•  It	is	the	crystal	ball	age	of	performance	observability	
•  What	majers	is	the	quesNons	you	want	answered	
•  Methodologies	are	a	great	way	to	pose	quesNons	

Who

How What

Why

References	&	Resources	
•  FreeBSD	@	Neylix:	

–  hjps://openconnect.itp.neylix.com/	
–  hjp://people.freebsd.org/~scojl/Neylix-BSDCan-20130515.pdf	
–  hjp://www.youtube.com/watch?v=FL5U4wr86L4	

•  USE	Method	
–  hjp://queue.acm.org/detail.cfm?id=2413037		
–  hjp://www.brendangregg.com/usemethod.html		

•  TSA	Method	
–  hjp://www.brendangregg.com/tsamethod.html	

•  Off-CPU	Analysis	
–  hjp://www.brendangregg.com/offcpuanalysis.html	
–  hjp://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html	
–  hjp://www.brendangregg.com/blog/2016-02-05/ebpf-chaingraph-prototype.html		

•  StaNc	Performance	Tuning,	Richard	Elling,	Sun	blueprint,	May	2000	
•  RED	Method:	hjp://www.slideshare.net/weaveworks/monitoring-microservices	
•  Other	system	methodologies	

–  Systems	Performance:	Enterprise	and	the	Cloud,	PrenNce	Hall	2013	
–  hjp://www.brendangregg.com/methodology.html		
–  The	Art	of	Computer	Systems	Performance	Analysis,	Jain,	R.,	1991	

•  Flame	Graphs	
–  hjp://queue.acm.org/detail.cfm?id=2927301	
–  hjp://www.brendangregg.com/flamegraphs.html	
–  hjp://techblog.neylix.com/2015/07/java-in-flames.html		

•  Latency	Heat	Maps	
–  hjp://queue.acm.org/detail.cfm?id=1809426		
–  hjp://www.brendangregg.com/HeatMaps/latency.html		

•  ARPA	Network:	hjp://www.computerhistory.org/internethistory/1960s	
•  RSTS/E	System	User's	Guide,	1985,	page	4-5	
•  DTrace:	Dynamic	Tracing	in	Oracle	Solaris,	Mac	OS	X,	and	FreeBSD,	PrenNce	Hall	2011	
•  Apollo:	hjp://www.hq.nasa.gov/office/pao/History/alsj/a11	hjp://www.hq.nasa.gov/alsj/alsj-LMdocs.html		

Thank	You	

•  hjp://slideshare.net/brendangregg		
•  hjp://www.brendangregg.com	
•  bgregg@neylix.com	
•  @brendangregg	

EuroBSDcon 2017

