
Brendan Gregg

Lead Performance Engineer, Joyent

brendan.gregg@joyent.com

Performance Analysis:
The USE Method

Saturday, July 28, 2012

mailto:brendan.gregg@joyent.com
mailto:brendan.gregg@joyent.com

whoami

•I work at the top of the performance support chain

•I also write open source performance tools
out of necessity to solve issues

•http://github.com/brendangregg

•http://www.brendangregg.com/#software

•And books (DTrace, Solaris Performance and Tools)

•Was Brendan @ Sun Microsystems, Oracle,
now Joyent

Saturday, July 28, 2012

http://github.com/brendangregg
http://github.com/brendangregg
http://www.brendangregg.com/#
http://www.brendangregg.com/#

Joyent

•Cloud computing provider

•Cloud computing software

•SmartOS

•host OS, and guest via OS virtualization

•Linux, Windows

•guest via KVM

Saturday, July 28, 2012

Agenda

•Example Problem

•Performance Methodology

•Problem Statement

•The USE Method

•Workload Characterization

•Drill-Down Analysis

•Specific Tools

Saturday, July 28, 2012

Example Problem

•Recent cloud-based performance issue

•Customer problem statement:

•“Database response time sometimes take multiple
seconds. Is the network dropping packets?”

•Tested network using traceroute, which showed some
packet drops

Saturday, July 28, 2012

Example: Support Path

•Performance Analysis

1st Level

2nd Level

Top

Customer Issues

Saturday, July 28, 2012

Example: Support Path

•Performance Analysis

1st Level

2nd Level

Top

Customer: “network drops?”

“ran traceroute,
can’t reproduce”

“network looks ok,
CPU also ok”

my turn

Saturday, July 28, 2012

Example: Network Drops

•Old fashioned: network packet capture (sniffing)

•Performance overhead during capture (CPU, storage)
and post-processing (wireshark)

•Time consuming to analyze: not real-time

Saturday, July 28, 2012

Example: Network Drops

•New: dynamic tracing

•Efficient: only drop/retransmit paths traced

•Context: kernel state readable

•Real-time: analysis and summaries

./tcplistendrop.d
TIME SRC-IP PORT DST-IP PORT
2012 Jan 19 01:22:49 10.17.210.103 25691 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.108 18423 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.116 38883 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.117 10739 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.112 27988 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.17.210.106 28824 -> 192.192.240.212 80
2012 Jan 19 01:22:49 10.12.143.16 65070 -> 192.192.240.212 80
[...]

Saturday, July 28, 2012

Example: Methodology

•Instead of network drop analysis, I began with the
USE method to check system health

Saturday, July 28, 2012

Example: Methodology

•Instead of network drop analysis, I began with the
USE method to check system health

•In < 5 minutes, I found:

•CPU: ok (light usage)

•network: ok (light usage)

•memory: available memory was exhausted, and the
system was paging

•disk: periodic bursts of 100% utilization

•The method is simple, fast, directs further analysis

Saturday, July 28, 2012

Example: Other Methodologies

•Customer was surprised (are you sure?) I used
latency analysis to confirm. Details (if interesting):

•memory: using both microstate accounting and
dynamic tracing to confirm that anonymous pagins
were hurting the database; worst case app thread
spent 97% of time waiting on disk (data faults).

•disk: using dynamic tracing to confirm latency at the
application / file system interface; included up to
1000ms fsync() calls.

•Different methodology, smaller audience (expertise),
more time (1 hour).

Saturday, July 28, 2012

Example: Summary

•What happened:

•customer, 1st and 2nd level support spent much time
chasing network packet drops.

•What could have happened:

•customer or 1st level follows the USE method and
quickly discover memory and disk issues

• memory: fixable by customer reconfig

• disk: could go back to 1st or 2nd level support for confirmation

•Faster resolution, frees time

Saturday, July 28, 2012

Performance Methodology

•Not a tool

•Not a product

•Is a procedure (documentation)

Saturday, July 28, 2012

Performance Methodology

•Not a tool -> but tools can be written to help

•Not a product -> could be in monitoring solutions

•Is a procedure (documentation)

Saturday, July 28, 2012

Why Now: past

•Performance analysis circa ‘90s, metric-orientated:

•Vendor creates metrics and performance tools

•Users develop methods to interpret metrics

•Common method: “Tools Method”

•List available performance tools

•For each tool, list useful metrics

•For each metric, determine interpretation

•Problematic: vendors often don’t provide the best
metrics; can be blind to issue types

Saturday, July 28, 2012

Why Now: changes

•Open Source

•Dynamic Tracing

•See anything, not just what the vendor gave you

•Only practical on open source software

•Hardest part is knowing what questions to ask

Saturday, July 28, 2012

Why Now: present

•Performance analysis now (post dynamic tracing),
question-orientated:

•Users pose questions

•Check if vendor has provided metrics

•Develop custom metrics using dynamic tracing

•Methodologies pose the questions

•What would previously be an academic exercise is
now practical

Saturday, July 28, 2012

Methology Audience

•Beginners: provides a starting point

•Experts: provides a checklist/reminder

Saturday, July 28, 2012

Performance Methodolgies

•Suggested order of execution:

1.Problem Statement

2.The USE Method

3.Workload Characterization

4.Drill-Down Analysis (Latency)

Saturday, July 28, 2012

Problem Statement

•Typical support procedure (1st Methodology):

1.What makes you think there is a problem?

2.Has this system ever performed well?

3.What changed? Software? Hardware? Load?

4.Can the performance degradation be expressed in
terms of latency or run time?

5.Does the problem affect other people or
applications?

6.What is the environment? What software and
hardware is used? Versions? Configuration?

Saturday, July 28, 2012

The USE Method

•Quick System Health Check (2nd Methodology):

•For every resource, check:

•Utilization

•Saturation

•Errors

Saturday, July 28, 2012

The USE Method

•Quick System Health Check (2nd Methodology):

•For every resource, check:

•Utilization: time resource was busy, or degree used

•Saturation: degree of queued extra work

•Errors: any errors
Saturation

Utilization

Errors

X

Saturday, July 28, 2012

The USE Method: Hardware
Resources

•CPUs

•Main Memory

•Network Interfaces

•Storage Devices

•Controllers

•Interconnects

Saturday, July 28, 2012

The USE Method: Hardware
Resources

•A great way to determine resources is to find (or
draw) the server functional diagram

•The hardware team at vendors should have these

•Analyze every component in the data path

Saturday, July 28, 2012

The USE Method: Functional
Diagrams, Generic Example

CPU
1

CPU
2

DRAM DRAM

I/O
Bridge

I/O
Controller

Disk Disk Port

Network
Controller

Port

CPU
Interconnect

Memory
Bus

Expander Interconnect

I/O Bus

Interface Transports

Saturday, July 28, 2012

The USE Method: Resource
Types

•There are two different resource types, each define
utilization differently:

•I/O Resource: eg, network interface

•utilization: time resource was busy.
current IOPS / max or current throughput / max
can be used in some cases

•Capacity Resource: eg, main memory

•utilization: space consumed

•Storage devices act as both resource types

Saturday, July 28, 2012

The USE Method: Software
Resources

•Mutex Locks

•Thread Pools

•Process/Thread Capacity

•File Descriptor Capacity

Saturday, July 28, 2012

The USE Method: Flow Diagram

Errors
Present?

Choose Resource

High
Utilization?

Saturation? Problem
Identified

Y

Y

Y

N

N

N

Saturday, July 28, 2012

The USE Method: Interpretation

•Utilization

•100% usually a bottleneck

•70%+ often a bottleneck for I/O resources, especially
when high priority work cannot easily interrupt lower
priority work (eg, disks)

•Beware of time intervals. 60% utilized over 5 minutes
may mean 100% utilized for 3 minutes then idle

•Best examined per-device (unbalanced workloads)

Saturday, July 28, 2012

The USE Method: Interpretation

•Saturation

•Any non-zero value adds latency

•Errors

•Should be obvious

Saturday, July 28, 2012

The USE Method: Easy
Combinations

Resource Type Metric

CPU utilization

CPU saturation

Memory utilization

Memory saturation

Network Interface utilization

Storage Device I/O utilization

Storage Device I/O saturation

Storage Device I/O errors

Saturday, July 28, 2012

The USE Method: Easy
Combinations

Resource Type Metric

CPU utilization CPU utilization

CPU saturation run-queue length

Memory utilization available memory

Memory saturation paging or swapping

Network Interface utilization RX/TX tput/bandwidth

Storage Device I/O utilization device busy percent

Storage Device I/O saturation wait queue length

Storage Device I/O errors device errors

Saturday, July 28, 2012

The USE Method: Harder
Combinations

Resource Type Metric

CPU errors

Network saturation

Storage Controller utilization

CPU Interconnect utilization

Mem. Interconnect saturation

I/O Interconnect saturation

Saturday, July 28, 2012

The USE Method: Harder
Combinations

Resource Type Metric

CPU errors eg, correctable CPU
cache ECC events

Network saturation “nocanputs”, buffering

Storage Controller utilization active vs max controller
IOPS and tput

CPU Interconnect utilization per port tput / max
bandwidth

Mem. Interconnect saturation memory stall cycles

I/O Interconnect saturation bus throughput / max
bandwidth

Saturday, July 28, 2012

The USE Method: tools

•To be thorough, you will need to use:

•CPU performance counters

•For bus and interconnect activity; eg, perf events, cpustat

•Dynamic Tracing

•For missing saturation and error metrics; eg, DTrace

•Both can get tricky; tools can be developed to help

•Please, no more top variants! ... unless it is
interconnect-top or bus-top

•I’ve written dozens of open source tools for both CPC
and DTrace; much more can be done

Saturday, July 28, 2012

Workload Characterization

•May use as a 3rd Methodology

•Characterize workload by:

•who is causing the load? PID, UID, IP addr, ...

•why is the load called? code path

•what is the load? IOPS, tput, type

•how is the load changing over time?

•Best performance wins are from eliminating
unnecessary work

•Identifies class of issues that are load-based, not
architecture-based

Saturday, July 28, 2012

Drill-Down Analysis

•May use as a 4th Methodology

•Peel away software layers to drill down on the issue

•Eg, software stack I/O latency analysis:

Application

System Call Interface

File System

Block Device Interface

Storage Device Drivers

Storage Devices

Saturday, July 28, 2012

Drill-Down Analysis:
Open Source

• With Dynamic Tracing, all function entry & return
points can be traced, with nanosecond timestamps.

•One Strategy is to measure latency pairs, to search
for the source; eg, A->B & C->D:

static int
arc_cksum_equal(arc_buf_t *buf)
{
 zio_cksum_t zc;
 int equal;

 mutex_enter(&buf->b_hdr->b_freeze_lock);
 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);

 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
 mutex_exit(&buf->b_hdr->b_freeze_lock);

 return (equal);
}

A

B

C D

Saturday, July 28, 2012

Other Methodologies

•Method R

•A latency-based analysis approach for Oracle
databases. See “Optimizing Oracle Performance" by
Cary Millsap and Jeff Holt (2003)

•Experimental approaches

•Can be very useful: eg, validating network throughput
using iperf

Saturday, July 28, 2012

Specific Tools for the USE
Method

Saturday, July 28, 2012

illumos-based

•http://dtrace.org/blogs/brendan/2012/03/01/the-use-
method-solaris-performance-checklist/

• ... etc for all combinations (would span a dozen slides)

Resource Type Metric

CPU Utilization

per-cpu: mpstat 1, “idl”; system-wide: vmstat 1, “id”;
per-process:prstat -c 1 (“CPU” == recent), prstat -
mLc 1 (“USR” + “SYS”); per-kernel-thread: lockstat -Ii
rate, DTrace profile stack()

CPU Saturation
system-wide: uptime, load averages; vmstat 1, “r”;
DTrace dispqlen.d (DTT) for a better “vmstat r”; per-process:
prstat -mLc 1, “LAT”

CPU Errors fmadm faulty; cpustat (CPC) for whatever error
counters are supported (eg, thermal throttling)

Memory Saturation
system-wide: vmstat 1, “sr” (bad now), “w” (was very
bad); vmstat -p 1, “api” (anon page ins == pain), “apo”;
per-process: prstat -mLc 1, “DFL”; DTrace anonpgpid.d
(DTT), vminfo:::anonpgin on execname

Saturday, July 28, 2012

http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2011/06/24/load-average-video/
http://dtrace.org/blogs/brendan/2011/06/24/load-average-video/

Linux-based

•http://dtrace.org/blogs/brendan/2012/03/07/the-use-
method-linux-performance-checklist/

• ... etc for all combinations (would span a dozen slides)

Resource Type Metric

CPU Utilization

per-cpu: mpstat -P ALL 1, “%idle”; sar -P ALL,
“%idle”; system-wide: vmstat 1, “id”; sar -u, “%idle”;
dstat -c, “idl”; per-process:top, “%CPU”; htop, “CPU%”;
ps -o pcpu; pidstat 1, “%CPU”; per-kernel-thread:
top/htop (“K” to toggle), where VIRT == 0 (heuristic). [1]

CPU Saturation

system-wide: vmstat 1, “r” > CPU count [2]; sar -q,
“runq-sz” > CPU count; dstat -p, “run” > CPU count; per-
process: /proc/PID/schedstat 2nd field
(sched_info.run_delay); perf sched latency (shows
“Average” and “Maximum” delay per-schedule); dynamic
tracing, eg, SystemTap schedtimes.stp “queued(us)” [3]

CPU Errors
perf (LPE) if processor specific error events (CPC) are
available; eg, AMD64′s “04Ah Single-bit ECC Errors Recorded
by Scrubber” [4]

Saturday, July 28, 2012

http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/
http://dtrace.org/blogs/brendan/2012/03/01/the-use-method-solaris-performance-checklist/

Products

•Earlier I said methodologies could be supported by
monitoring solutions

•At Joyent we develop Cloud Analytics:

Saturday, July 28, 2012

Future

•Methodologies for advanced performance issues

• I recently worked a complex KVM bandwidth issue where
no current methodologies really worked

•Innovative methods based on open source +
dynamic tracing

•Less performance mystery. Less guesswork.

•Better use of resources (price/performance)

•Easier for beginners to get started

Saturday, July 28, 2012

Thank you

•Resources:

•http://dtrace.org/blogs/brendan

• http://dtrace.org/blogs/brendan/2012/02/29/the-use-method/

• http://dtrace.org/blogs/brendan/tag/usemethod/

• http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-
utilization/ - ideas if you are a monitoring solution developer

•brendan@joyent.com

Saturday, July 28, 2012

http://dtrace.org/blogs/brendan/2012/02/29/the-use-method/
http://dtrace.org/blogs/brendan/2012/02/29/the-use-method/
http://dtrace.org/blogs/brendan/tag/usemethod/
http://dtrace.org/blogs/brendan/tag/usemethod/
http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/
http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/
http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/
http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/
mailto:brendan@joyent.com
mailto:brendan@joyent.com

