
dt race.o rg http://dtrace.org/blogs/brendan/2012/03/26/subsecond-offset-heat-maps/

Subsecond Offset Heat Maps

“Wow, that’s weird!”. My subsecond of f set visualization type looked great, but others f ound it weird and
unf amiliar. I developed it f or inclusion in Joyent’s Cloud Analytics tool f or the purposes of workload
characterization. Given that it was so unf amiliar, I had some explaining to do.

Voxer, a company that makes a walkie-talkie application f or smart
phones, had been seeing a perf ormance issue with their Riak
database. The issue appeared to be related to TCP listen drops –
when SYNs are dropped as the application can’t keep up with the
accept() queue. Voxer has millions of users whose numbers are
growing f ast, so I expected to see Riak hit 100% CPU usage when
these drops occurred. The subsecond of f set heat map (top on the
right) painted a dif f erent story, which led to an operating system
kernel f ix.

Weird but wonderf ul, this heat map helped solve a hard problem, and
I was lef t with some interesting screenshots to help explain this
visualization type.

In this post, I’ll explain subsecond of f set heat maps using the Voxer
issue as a case study, then show various other interesting examples
f rom a production cloud environment. This environment is a single datacenter that includes 200 physical
servers and thousands of OS instances. The heat maps are all generated by Joyent Cloud Analytics, which
uses DTrace to f etch the data.

Description

The subsecond of f set heat map puts t ime on two axes. The x-axis shows the passage
of t ime, with each column representing one second. The y-axis shows the time within a
second, spanning f rom 0.0s to 1.0s (t ime of f sets). The z-axis (color) show the count of
samples or events, quantized into x- and y-axis ranges (“buckets”), with the color
darkness ref lecting the event count (darker == more). This relationship is shown to the
right.

I previously explained the use of quantized heat maps in section 11 of Visualizing Device
Utilization. I use them to show event latency as well.

Time on Two Axes

Heat maps aren’t the weird part. What’s weird is
putting time on more than one axis. Stephen Wolf ram
recently posted The Personal Analytics of My Lif e,
which included an amazing scatter plot (on the lef t).
This has time on both x- and y- axes. I’ve included it
as it may be a much easier example to grasp at f irst
glance, bef ore the subsecond of f set heat maps.

http://dtrace.org/blogs/brendan/2012/03/26/subsecond-offset-heat-maps/
http://dtrace.org/blogs/dap/2011/03/01/welcome-to-cloud-analytics/
http://dtrace.org/blogs/brendan/files/2012/03/subsec-010-crop.png
http://www.voxer.com/
http://dtrace.org/blogs/about/
http://dtrace.org/blogs/brendan/files/2012/03/axis-crop.png
http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/
http://dtrace.org/blogs/brendan/2011/06/03/file-system-latency-part-5/
http://dtrace.org/blogs/brendan/files/2012/03/wolfram.png
http://blog.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/

His is at a much longer t ime scale: the x-axis shows
days, and the y-axis shows of f set within a day. Using
similar terminology, this could be called a “subday-
of f set” or “24hr-of f set” scatter plot. Each point on
his plot shows when Wolf ram sent an email, revealing
his sleeping habits as the white gap in the morning.

Scatter plots are limited in the density of the points they can display, and don’t compress the data set (x & y
coordinates are kept f or each event). Heat maps solve both issues, allowing them to scale, which is especially
important f or the cloud computing uses that f ollow. These use the subsecond of f set scale, but other ranges
are possible as well (minute-of f set, hour-of f set, day-of f set).

That’s No Artifact

The screenshot at the top of this page (click any f or f ull- res) used a subsecond of f set heat map f or CPU
thread samples – showing when applications were on-CPU during the second. The sampling was at 99 Hertz
across all CPUs, to minimize overhead (instead of , say, 1000 Hz), and to avoid lockstep (with any power-of -10
Hz task). These CPU samples are then quantized into the buckets seen as pixels.

The heat map revealed that CPU usage dropped at the same time as the TCP listen drops. I was expecting the
opposite.

By selecting Riak (as “beam.smp”, the Erlang VM it uses) and “Isolate selected”, only Riak is shown:

Lef t of center shows two columns, each with about 40% of the of f sets colored white. Assuming no sampling
issue, it means that the Riak database was entirely of f -CPU f or hundreds of consecutive milliseconds. This is
similar to the white gaps showing when Wolf ram was asleep — except that we aren’t expecting the Riak
database to take naps! This was so bizarre that I f irst thought that something was wrong with the
instrumentation, and that the white gaps were an artif act.

Application threads normally spend time of f -CPU when blocked on I/O or waiting f or work. What’s odd here is
that f or so long the number of running Riak threads is zero, when normally it varies more quickly. And this
event coincided with TCP listen drops.

The Shoe That Fits

http://dtrace.org/blogs/brendan/files/2012/03/subsec-020-crop.png

The Shoe That Fits

In Cloud Analytics, heat maps can be clicked to reveal details at that point. I clicked inside the white gap, which
revealed that a process called “zoneadmd” was running; isolating it:

This f its the white gap closely, and a similar relationship was observed at other t imes as well. This pointed
suspicion to zoneadmd, which other observability tools had missed. Some tools sampled the running
processes every f ew seconds or minutes, and usually missed the short- lived zoneadmd completely. Even
watching every second was dif f icult: Riak’s CPU usage dropped f or two seconds, at a dif f erent rate to what
zoneadmd consumed (Riak is multi- threaded, so it can consume more CPU in the same interval than the single-
threaded zoneadmd). The subsecond of f set heat map showed the clearest correlation: the duration of these
events was similar, and the starting and ending points were nearby.

If zoneadmd was somehow blocking Riak f rom executing, it would explain the of f -CPU gap and also the TCP
listen drops – as Riak wouldn’t be running to accept the connections.

Kernel Fix

Investigation on the server using DTrace quickly f ound that Riak was getting blocked as it waited f or an
address space lock (as_lock) during mmap()/munmap() calls f rom its bitcask storage engine. That lock was
being held by zoneadmd f or hundreds of milliseconds (see the Artif acts section later f or a longer description).
zoneadmd enf orces multi- tenant memory limits, and every couple of minutes checked the size of Riak. It did
this via kernel calls which scan memory pages while holding as_lock. This scan took time, as Riak was tens of
Gbytes in size.

We f ound other applications exhibit ing the same behavior, including Riak’s “memsup” memory monitor. All of
these were blocking Riak, and with Riak of f -CPU unable to accept() connections, the TCP backlog queue of ten
hit its limit result ing in TCP listen drops (tcpListenDrop). Jerry Jelinek of Joyent has been f ixing these
codepaths via kernel changes.

Patterns

http://dtrace.org/blogs/brendan/files/2012/03/subsec-030-crop.png

The previous heat map included a “Distribution details” box at the bottom, summarizing the quantized bucket
that I clicked on. It shows that “zoneadmd” and “ipmitool” were running, each sampled twice in the range 743 –
763 ms (consistent with them being single threaded and sampled at 99 Hertz).

ipmitool and zabbix_agentd

To check whether ipmitool was an issue, I isolated its on-CPU
usage and f ound that it of ten did not coincide with Riak of f -
CPU time. While checking this, I f ound a interesting pattern
caused by zabbix_agentd. These are shown on the right:
ipmitool is highlighted in yellow, and zabbix_agentd in red.

Just based on the heat map, it would appear that
zabbix_agentd is a single thread (or process) that wakes up every second to perf orm a small amount of work.
It then sleeps f or an entire second. Repeat. This causes the diagonal rising line, the slope of which is relative
to time zabbix_agentd worked bef ore sleeping f or the next f ull second: with greater slopes (approaching 90
degrees) ref lecting more work was perf ormed bef ore the next sleep.

zabbix_agentd is part of the Zabbix monitoring sof tware. If it is supposed to perf orm work roughly every
second, then it should be ok. But if it is supposed to perf orm work exactly once a second, such as reading
system counters to calculate the statistics it is monitoring, then there could be problems.

Cloud Scale

The previous examples showed CPU thread samples on a single server (each tit le included “predicated by
server hostname == …”). Cloud Analytics can show these f or the entire cloud – which may be hundreds of
systems (virtualized operating system instances). I’ll show this with a dif f erent heat map type: instead of CPU
thread samples, which shows the CPU usage of applications, I’ll show subsecond of f set of system calls
(syscalls), which paints a dif f erent picture – one better ref lecting the I/O behavior. Tracing syscalls can reveal
more processes than by sampling, which can miss short- lived events.

The two images that f ollow show subsecond of f sets f or syscalls across an entire datacenter (200 physical
servers, thousands of OS instances). On the lef t are syscalls by “httpd” (Apache web server), and the right are
those by the “ls” command:

httpd ls

Neither of these may be very surprising. The httpd syscalls will arrive at random times based on the client
workload, and combining them f or dozens of busy web servers results in a heat map with random color
intensit ies (which have been enhanced due to the rank-based def ault color map).

http://dtrace.org/blogs/brendan/files/2012/03/subsec-040-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-050-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-120-crop.png
http://dtrace.org/blogs/dap/2011/06/20/heatmap-coloring/

Sometimes the heat maps are surprising. The next two show zeus.f lipper (web load balancing sof tware), on
the lef t f or the entire cloud, and on the right f or a single server:

zeus.flipper zeus.flipper (single)

The cloud-wide heat map does show that there is a pattern present, which has been isolated f or a single
server on the right. It appears that multiple threads are present: many waking up more than once a second (the
two large bands), and others waking up every two (), f ive () and ten seconds ().

Cloud Wide vs Single Server

Here are some other examples comparing an entire cloud vs a single server (click f or f ull
screenshot). These are also syscall subsecond of f sets:

node.js node.js (single)

Java Java (single)

http://dtrace.org/blogs/brendan/files/2012/03/subsec-060-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-070-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-240-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-260-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-090-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-100-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-140-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-150-crop.png

Python Python (single)

I’ve just shown one single server example f or node.js, Java, and Python, however each server can look quite
dif f erent based on its use and workload. Applications such as zeus.f lipper are more likely to look similar as
they serve the same f unction on every server.

Cloud Identif ication Chart

Some other cloud-wide examples, using syscall subsecond of f sets:

awk bash

kstat munin-node

Perl php-fpm

The munin-node heat map has several lines of dots , each dot two seconds apart. Can you guess
what those might be?

http://dtrace.org/blogs/brendan/files/2012/03/subsec-200-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-210-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-130-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-110-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-220-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-230-crop.png

Color Maps

The colors chosen f or the heat map can either be rank-based or linear-based, which select color saturation
dif f erently. The selected type f or the previous heat maps can be seen af ter “COLOR BY:” in the f ull
screenshots (click images)

This shows node.js processes across the entire cloud, to compare the color maps side-by-side:

node.js (rank) node.js (linear)

The rank-based heat map highlights subtle variation well. The linear colored heat map ref lects reality. This is an
extreme example; of ten the heat maps look much more similar. For a longer description of rank vs linear, see
Dave Pacheco’s heat map coloring post, and the Saturation section in my Visualizing Device Utilization post.

Artifacts

The f irst example I showed f eatured the Riak database
being blocked by zoneadmd. The blocking event was
continuous, and lasted f or almost a f ull second. It was
shown twice in the f irst subsecond of f set column due to
the way the data is currently collected by Joyent Cloud
Analytics – resulting in an “artif act”.

This is shown on the right. The time that a column of data
is collected f rom the server does not occur at the 0.0
of f set, but rather some other of f set during the second.
This means that an activity that is in- f light will suddenly jump to the next column, as has happened here (at the
“3″ mark). It also means that an activity at the top of the column can wrap and continue at the bottom of the
same column (at the “2″ mark), bef ore the column switch occurs. I think this is f ixable by recalculating of f sets
relative to the data collection time, so the switch happens at of f set 0.0. (It hasn’t been f ixed already since it
usually isn’t annoying, and didn’t noticeably interf ere with the many other examples I’ve shown.)

On the lef t is a dif f erent type of artif act, one caused when data collection is
delayed. To minimize overhead, data is aggregated in-kernel, then read at a
gentle rate (usually once per second) by a user- land process. This problem
occurs when the user- land process is delayed slightly f or some reason, and
the kernel aggregations include extra data (overlapping of f sets) by the time
they are read. Those of f sets are then missing f rom the next column, on the
right.

Thread Scheduling

http://dtrace.org/blogs/brendan/files/2012/03/subsec-240-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-250-crop.png
http://dtrace.org/blogs/dap/2011/06/20/heatmap-coloring/
http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/
http://dtrace.org/blogs/brendan/files/2012/03/artifact01-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/artifact02-crop.png

I intended to include a “checkerboard” heat map of CPU samples, like those Robert Mustacchi showed in his
Visualizing KVM post. This involves running two threads (or processes) that share one CPU, each perf orming
the same CPU-bound workload. When each is highlighted in dif f erent colors it should look like a checkerboard,
as the kernel scheduler evenly switches between running them.

Robert was testing on the Linux kernel under KVM, and used DTrace to inspect running threads f rom the
SmartOS host (by checking the VM MMU context). I perf ormed the experiment on SmartOS directly, which
resulted in the f ollowing heat map:

This breaks my head. Instead of a neat checkerboard, this is messy – showing uneven runtimes f or the
identical threads. One column in particular is entirely red, which if true (not a sampling or instrumentation
error) meant that the scheduler lef t the same thread running f or an entire second, while another was in the
ready-to-run state on the CPU dispatcher queue. This is much longer than the maximum runtime quantum set
by the scheduler (110 ms f or the FSS class). I conf irmed this behavior using two dif f erent means (DTrace, and
thread microstate accounting), and saw even worse instances – threads blocked f or many seconds when they
should have been running.

Jerry Jelinek has been wading into the scheduler code, f inding evidence that this is a kernel bug (in code that
hasn’t changed since Solaris) and developing the f ix. Fortunately, not many of our customers have hit this
since it requires CPUs running at saturation (which isn’t normal f or us).

UPDATE (April 2nd)

Jerry has f ixed the code, which was a bug with how thread priorit ies were updated in the scheduler. The
f ollowing screenshot shows the same workload post- f ix:

This looks much better. There are no longer any f ull seconds where one thread hogs the CPU, with the other
thread waiting. Looking more closely, there appear to be cases where the thread has switched early – which is
much better than switching late.

We also f ound that the bug was indeed hurting a customer along with a conf luence of other f actors.

Conclusion

The subsecond of f set heat map provides new visibility f or sof tware execution time, which can be used f or
workload characterization and perf ormance analysis. These are currently available in Joyent Cloud Analytics,

http://dtrace.org/blogs/rm/2011/08/16/visualizing-kvm/
http://dtrace.org/blogs/brendan/files/2012/03/subsec-160-crop.png
http://dtrace.org/blogs/brendan/files/2012/03/subsec-170.png

f rom which I included screenshots of these heat maps f or production environments.

Using these heat maps I identif ied two kernel scheduling issues, one of which was causing dropped TCP
connections f or a large scale cloud-based service. Kernel f ixes are being developed f or both. I also showed
various applications running on single servers and the cloud, which produced f ascinating patterns – providing a
new way of understanding application runtime.

The examples I included here were based on sampled thread runtime, and traced system call execution times.
Other event sources can be visualized in this way, and these could also be produced on other t ime f rames:
sub-minute, sub-hour, etc.

Acknowledgements

Dave Pacheco leads the Joyent Cloud Analytics project. All of the heat maps shown here (except
Wolf ram’s) are f rom Cloud Analytics.

The Cloud Analytics team with whom I discussed this visualization.

Bryan Cantrill wrote the prototype Cloud Analytics tool which I hacked to test out this idea in production,
and he came up with the name “subsecond of f set”. He also f athered DTrace, which is used to f etch all
the data shown by the heat maps.

Robert Mustacchi developed the Meta-D language f or Cloud Analytics instrumentations, which made
implementing subsecond of f set heat maps trivial, and put them to use f or KVM.

Jerry Jelinek, f or f ixing the tricky kernel bugs that these heat maps have recently been unearthing.

Stephen Wolf ram‘s recent post was great t iming, as it provided an intuit ive example of a graph having
time on both axes.

Edward Tuf te f or the idea of high def init ion images in text, and f or inspiration to try harder in general
(see any of his texts).

Deirdré Straughan f or edits and suggestions.

Thanks to the f olk at Voxer f or realizing (earlier than I did) that something more than just normal bursts of load
was causing the tcpListenDrops, and pushing f or the real answer.

Posted on March 26, 2012 at 11:16 am by Brendan Gregg · Permalink In: Perf ormance · Tagged with: cloud
analytics, dtrace, subsecond, visualizations

« Previous post
Next post »

http://dtrace.org/blogs/dap
http://dtrace.org/blogs/bmc
http://dtrace.org/blogs/rm
https://blogs.oracle.com/jerrysblog/entry/writing_the_opensolaris_bible
http://blog.stephenwolfram.com/
http://blog.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/
http://www.edwardtufte.com/tufte/
http://www.beginningwithi.com/comments
http://www.voxer.com/
http://dtrace.org/blogs/brendan/2012/03/26/subsecond-offset-heat-maps/
http://dtrace.org/blogs/brendan/category/performance/
http://dtrace.org/blogs/brendan/tag/cloud-analytics/
http://dtrace.org/blogs/brendan/tag/dtrace-2/
http://dtrace.org/blogs/brendan/tag/subsecond/
http://dtrace.org/blogs/brendan/tag/visualizations/
http://dtrace.org/blogs/brendan/2012/03/17/linux-kernel-performance-flame-graphs/
http://dtrace.org/blogs/brendan/2012/05/08/dtrace-conf-2012-videos/

	Subsecond Offset Heat Maps
	Description
	Time on Two Axes
	That’s No Artifact
	The Shoe That Fits
	Kernel Fix
	Patterns
	Cloud Scale
	Cloud Wide vs Single Server
	Cloud Identification Chart
	Color Maps
	Artifacts
	Thread Scheduling
	UPDATE (April 2nd)

	Conclusion
	Acknowledgements

