
dt race.o rg http://dtrace.org/blogs/brendan/2013/01/11/virtualization-performance-zones-kvm-xen/

Virtualization Performance: Zones, KVM, Xen

At Joyent we run a high-perf ormance public cloud based on two dif f erent virtualization technologies: Zones
and KVM. We have historically run Xen as well, but have phased it out f or KVM on SmartOS. My job is to make
things go fast, which of ten means using DTrace to analyze the kernel, applications, and those virtualization
technologies. In this post I’ll summarize their perf ormance in f our ways: characteristics, block diagrams,
internals, and results.

Attribute Zones Xen KVM

CPU
Perf ormance

high high (with CPU
support)

high (with CPU support)

CPU
Allocation

f lexible (FSS + “bursting”) f ixed to VCPU limit f ixed to VCPU limit

I/O
Throughput

high (no intrinsic overhead) low or medium (with
paravirt)

low or medium (with paravirt)

I/O Latency low (no intrinsic overhead) some (I/O proxy
overhead)

some (I/O proxy overhead)

Memory
Access
Overhead

none some (EPT/NPT or
shadow page
tables)

some (EPT/NPT or shadow page
tables)

Memory Loss none some (extra
kernels; page
tables)

some (extra kernels; page tables)

Memory
Allocation

f lexible (unused guest memory
used f or f ile system cache)

f ixed (and possible
double-caching)

f ixed (and possible double-caching)

Resource
Controls

many (depends on OS) some (depends on
hypervisor)

most (OS + hypervisor)

Observability:
f rom the
host

highest (see everything) low (resource
usage, hypervisor
statistics)

medium (resource usage,
hypervisor statistics, OS inspection
of hypervisor)

Observability:
f rom the
guest

medium (see everything
permitted, incl. some physical
resource stats)

low (guest only) low (guest only)

Hypervisor
Complexity

low (OS partit ions) high (complex
hypervisor)

medium

Dif f erent OS
Guests

usually no (sometimes possible
with syscall translation)

yes yes

There are variations with how these can be conf igured, and details in this table may vary. At the very least, this
can serve as a checklist of characteristics to conf irm, which may also be helpf ul if you are considering other
technologies (eg, VMWare). Wikipedia also has a table of general characteristics.

The three in this table represent dif f erent types: OS Virtualization (Zones), and Hardware Virtualization of
both Type 1 (Xen) and Type 2 (KVM) varieties.

The delivered perf ormance of these is crit ical. In general, we use f ast server hardware, 10 GbE networks, ZFS
f or all f ile systems, DTrace f or perf ormance analysis, and Zones wherever possible. We also perf ormed our
own port of KVM to illumos, and run KVM instances inside Zones, providing additional resource controls than
can be applied, and improved security (“double-hulled virtualization”).

http://dtrace.org/blogs/brendan/2013/01/11/virtualization-performance-zones-kvm-xen/
http://en.wikipedia.org/wiki/Solaris_Zones
http://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
http://en.wikipedia.org/wiki/Xen
http://smartos.org/
http://www.slideshare.net/brendangregg/dtracecloud2012
http://en.wikipedia.org/wiki/Operating_system-level_virtualization#Implementations
http://en.wikipedia.org/wiki/Operating_system-level_virtualization
http://en.wikipedia.org/wiki/Hardware_virtualization
http://en.wikipedia.org/wiki/Hypervisor#Classification
http://en.wikipedia.org/wiki/Hypervisor#Classification
http://en.wikipedia.org/wiki/ZFS
http://dtrace.org/blogs/about/
http://en.wikipedia.org/wiki/Solaris_Zones
http://dtrace.org/blogs/bmc/2011/08/15/kvm-on-illumos

There are many characteristics I’d like to discuss in more detail. In this post, I’ll look at the I/O path (network,
disk) and its overhead.

I/O Path

How does I/O dif f er between tradit ional Unix and Zones?

Perf ormance is exactly the same – there is no overhead. Zones partit ion the OS in the same way that chroot
isolates a process in the f ile system. There isn’t necessarily an extra layer in the sof tware stack to make this
work.

Now f or Xen and KVM (simplif ied!):

GK is Guest Kernel, and domU on Xen runs the guest OS. Some of these arrows are indicating the control-path,
where components inf orm each other, either synchronously or asynchronously, that more data is ready to
transf er. The data-path may be implemented in some cases by shared memory and ring buf f ers. There are also
dif f erent ways this can be conf igured. For example, Xen can use Isolated Driver Domains (IDD), or stub-
domains, to run the I/O proxies in isolation.

With Xen, the hypervisor perf orms CPU scheduling f or the domains, and then each domain has its own OS
kernel f or thread scheduling. The hypervisor supports dif f erent CPU scheduling classes, including Borrowed
Virtual Time (BVT), Simple Earliest Deadline First (SEDF), and Credit-Based. The domains use the OS kernel
scheduler, and whatever regular scheduler classes and policies they provide.

The extra overhead of multiple schedulers costs perf ormance. Having multiple schedulers can also create
complex issues with how they interact, adding CPU latency in the wrong situations. Debugging this can be very
dif f icult, especially since the Xen hypervisor is running out of reach of the usual OS perf ormance tools (try

http://dtrace.org/blogs/brendan/files/2013/01/virtualization_unix_zones.png
http://dtrace.org/blogs/brendan/files/2013/01/virtualization_xen_kvm.png

xentrace instead).

Sending I/O via the I/O proxy processes (which are usually qemu) involves context-switching and more
overhead. There has been lots of work to minimize this, including shared memory transports, buf f ering, I/O
coalescing, and paravirtualization drivers.

With KVM, the hypervisor is a kernel module (kvm) which is scheduled by the OS scheduler. It can be tuned
using the usual OS kernel scheduler classes, policies and priorit ies. The I/O path takes f ewer steps than Xen.
(The original Qumranet KVM paper described it as f ive steps vs ten, although this description isn’t including
paravirtualization.)

With Zones, there’s no comparison. The I/O path – which f or high-speed networking is very sensit ive – has
none of these extra steps. While this has been well known in the Solaris community f or years (Zones being a
Solaris technology), and also the FreeBSD community (as Zones are based on FreeBSD jails), the Linux
community is still learning about them and developing their own version: Linux Containers. Glauber Costa
described them in his talk “The f ailure of Operating Systems, and how we can f ix it” f or Linuxcon 2012, and
listed various use cases where KVM was currently used. Many of the use cases could be served by Containers,
and didn’t actually need KVM.

Sometimes you (and our customers) really do need Hardware Virtualization, as their applications depend on a
particular version of the Linux kernel, or Windows. We provide this with KVM (we’ve phased out Xen).

Internals

Some deeper insights into how these work (of ten using DTrace).

Network I/O, Zones

The f ollowing two stack traces show how a network packet is transmitted f rom the global zone (the host,
which is the same as a bare-metal install) and f rom a zone (the guest):

 Global Zone: Zone:
 mac`mac_tx+0xda mac`mac_tx+0xda
 dld`str_mdata_fastpath_put+0x53 dld`str_mdata_fastpath_put+0x53
 ip`ip_xmit+0x82d ip`ip_xmit+0x82d
 ip`ire_send_wire_v4+0x3e9 ip`ire_send_wire_v4+0x3e9
 ip`conn_ip_output+0x190 ip`conn_ip_output+0x190
 ip`tcp_send_data+0x59 ip`tcp_send_data+0x59
 ip`tcp_output+0x58c ip`tcp_output+0x58c
 ip`squeue_enter+0x426 ip`squeue_enter+0x426
 ip`tcp_sendmsg+0x14f ip`tcp_sendmsg+0x14f
 sockfs`so_sendmsg+0x26b sockfs`so_sendmsg+0x26b
 sockfs`socket_sendmsg+0x48 sockfs`socket_sendmsg+0x48
 sockfs`socket_vop_write+0x6c sockfs`socket_vop_write+0x6c
 genunix`fop_write+0x8b genunix`fop_write+0x8b
 genunix`write+0x250 genunix`write+0x250
 genunix`write32+0x1e genunix`write32+0x1e
 unix`_sys_sysenter_post_swapgs+0x14 unix`_sys_sysenter_post_swapgs+0x14

I spent (way) too much time double-checking that I didn’t switch these two stacks by accident, since they are
identical. The stack on the right shows the same code path taken.

You could conf igure Zones in a way that it does have overhead, just like on a normal system. For example,
enabling a f irewall f or network I/O, or mounting f ile systems via lof s instead of directly. These are optional, and
may be worth the extra perf ormance overhead f or certain use cases.

Network I/O, KVM

The f ull code path f or perf orming network I/O is complex.

The f irst part is the guest process writ ing to its driver. In this case, I’m demonstrating a Linux Fedora guest

http://www.linuxinsight.com/files/kvm_whitepaper.pdf
http://events.linuxfoundation.org/images/stories/pdf/lcna_co2012_costa.pdf

with DTrace-f or-Linux, and tracing the paravirt driver:

guest# dtrace -n 'fbt:virtio_net:start_xmit:entry { @[stack(100)] = count(); }'
dtrace: descript ion 'fbt:virt io_net:start_xmit:entry ' matched 1 probe
^C
[...]
 kernel̀ start_xmit+0x1
 kernel̀ dev_hard_start_xmit+0x322
 kernel̀ sch_direct_xmit+0xef
 kernel̀ dev_queue_xmit+0x184
 kernel̀ eth_header+0x3a
 kernel̀ neigh_resolve_output+0x11e
 kernel̀ nf_hook_slow+0x75
 kernel̀ ip_finish_output
 kernel̀ ip_finish_output+0x17e
 kernel̀ ip_output+0x98
 kernel̀ __ip_local_out+0xa4
 kernel̀ ip_local_out+0x29
 kernel̀ ip_queue_xmit+0x14f
 kernel̀ tcp_transmit_skb+0x3e4
 kernel̀ __kmalloc_node_track_caller+0x185
 kernel̀ sk_stream_alloc_skb+0x41
 kernel̀ tcp_write_xmit+0xf7
 kernel̀ __alloc_skb+0x8c
 kernel̀ __tcp_push_pending_frames+0x26
 kernel̀ tcp_sendmsg+0x895
 kernel̀ inet_sendmsg+0x64
 kernel̀ sock_aio_write+0x13a
 kernel̀ do_sync_write+0xd2
 kernel̀ security_file_permission+0x2c
 kernel̀ rw_verify_area+0x61
 kernel̀ vfs_write+0x16d
 kernel̀ sys_write+0x4a
 kernel̀ sys_rt_sigprocmask+0x84
 kernel̀ system_call_fastpath+0x16
 2015

That’s the Linux 3.2.6 network transmit path.

Control is passed by KVM to the qemu I/O proxy, which then transmits it on the host OS via the usual means
(native driver). Here is the SmartOS stack in this case:

https://github.com/dtrace4linux/linux

host# dtrace -n 'fbt::igb_tx:entry { @[stack()] = count(); }'
dtrace: descript ion 'fbt::igb_tx:entry ' matched 1 probe
^C
[...]
 igb`igb_tx_ring_send+0x33
 mac`mac_hwring_tx+0x1d
 mac`mac_tx_send+0x5dc
 mac`mac_tx_single_ring_mode+0x6e
 mac`mac_tx+0xda
 dld`str_mdata_fastpath_put+0x53
 ip`ip_xmit+0x82d
 ip`ire_send_wire_v4+0x3e9
 ip`conn_ip_output+0x190
 ip`tcp_send_data+0x59
 ip`tcp_output+0x58c
 ip`squeue_enter+0x426
 ip`tcp_sendmsg+0x14f
 sockfs`so_sendmsg+0x26b
 sockfs`socket_sendmsg+0x48
 sockfs`socket_vop_write+0x6c
 genunix`fop_write+0x8b
 genunix`write+0x250
 genunix`write32+0x1e
 unix`_sys_sysenter_post_swapgs+0x149
 1195

Both of these stacks are pretty complex to begin with. Then there is the stuf f in-between the Linux kernel
and the illumos kernel, which gets even more complicated and involved. Basically, the paravirt code paths
allow the two kernel stacks to make intimate love.

When Robert Mustacchi of Joyent last investigated these code paths in detail, he drew up some wonderf ul
ASCII diagrams like the f ollowing:

/*
 * GUEST # QEMU
 *
###
 * #
 * +----------+ #
 * | start_ | (1) #
 * | xmit() | #
 * +----------+ #
 * || #
 * || +-----------+ #
 * ||------>|free_old_ | (2) #
 * ||------>|xmit_skbs()| #
 * || +-----------+ #
 * \/ (3) #
 * +---------+ +-------------+ + - #--- PIO write to VNIC
 * | xmit_ |------->|virtqueue_add| | # PCI config space (6)
 * | skb() |------->|_buf_gfp() | | #
 * +---------+ +-------------+ | #
 * || | # +- VM exit
 * || +- iff interrupts | # | KVM driver exit (7)
 * \/ | unmasked (4) | # |
 * +---------+ | +-----------+(5) | # | +---------+
 * |virtqueue|----*---->|vp_notify()|-----*---#-*->| handle | (8)
 * |_kick() |----*---->| |-----*---#-*->|PIO write|
 * +---------+ +-----------+ # +---------+
 * || # ||
 * || (13) # ||
 * **-----+ iff avail ring # \/ (9)
 * || capacity < 20 # +-----------------+
 * || else return # |virt io_net_handle|
 * || # |tx_t imer() |
 * \/ (14) # +-----------------+

http://dtrace.org/blogs/rm

 * +----------+ # ||
 * |netif_stop| # || (10)
 * |_queue() | # || +---------+
 * +----------+ # ||-->|qemu_mod_|
 * || # ||-->|t imer() |
 * || (15) (16) # || +---------+
 * +----------------+ +----------+ # ||
 * |virtqueue_enable|---->|unmask | # || (11)
 * |_cb_delayed() |---->|interrupts| # || +------------+
 * +----------------+ +----------+ # |+->|virt io_ |
 * || || # +-->|queue_set_ |
 * || (18) || (17) # |notification|
 * || +-return +-------------------+ # +------------+
 * || | iff ---->|check if the number| # |
 * **--+ is false |of unprocessed used| # | disable host
 * || |ring entries is > | # +- interrupts
 * || |3/4s of the avail | # (12)
 * \/ (19) |ring index - the | #
 * +-----------+ |last freed used | #
 * |free_old_ | |ring index | #
 * |xmit_skbs()| +-------------------+ #
 * +-----------+ #
 * || #
 * || (20) #
 * **-----+ iff avail ring #
 * || capacity is #
 * || now > 20 #
 * \/ #
 * +-----------+ #
 * |netif_start| (21) #
 * |_queue() | #
 * +-----------+ #
 * || #
 * || #
 * \/ (22) (23) #
 * +------------+ +----------+ #
 * |virtqueue_ |----->|mask | #
 * |disable_cb()|----->|interrupts| #
 * +------------+ +----------+ #
 * #
 * #
 */
 Figure II: Guest / Host Packet TX Part 1

I included this diagram just to give you a sense of what happens. And that’s only part 1.

In brief , this uses ring buf f ers in shared memory to transf er the data, and a notif ication mechanism to inf orm
when data is ready to transf er. When everything is working as intended, perf ormance can be quite reasonable.
It isn’t bare-metal f ast (or Zones f ast), but it isn’t terrible either. I’ve included some numbers later in this post.

The CPU overhead and reduced network perf ormance is one thing. Another is the complexity this introduces,
which hampers analysis and perf ormance investigations. With Zones, there is one kernel TCP/IP stack to study
and tune. Given its complexity, one is more than enough! With KVM, there are two dif f erent kernel TCP/IP
stacks, plus KVM and paravirt. Investigating perf ormance can take ten times longer, or so long that it becomes
prohibit ive. This is why I included “Observability” as a key characteristic in my comparison table. If it ’s harder to
see, it ’s harder to tune.

Network I/O, Xen

The guest transmit and I/O proxy transmit stacks are the same. The in-between bit gets more complex. The
hypervisor can’t be inspected using OS observability and debugging tools, since it ’s running on bare-metal
directly. There is xentrace, which looks pretty usef ul, as it instruments many event types in the Xen scheduler
using static probes. (Even if it isn’t real- t ime and programmatic like DTrace, and, requires me to learn Yet
Another Tracer.)

/proc, Zones

While the I/O path may have zero extra overhead by def ault, there are some overheads with OS Virtualization,
usually f or administration or observability, and not in the CPU or I/O “hot path”.

For example, a Zone cannot see other guests on the same system via /proc, as read by prstat(1M), top(1),
etc. This is implemented in usr/src/uts/common/f s/proc/prvnops.c:

stat ic int
pr_readdir_procdir(prnode_t *pnp, uio_t *uiop, int *eofp)
{
[...]
 /*
 * Loop until user's request is sat isfied or until all processes
 * have been examined.
 */
 while ((error = gfs_readdir_pred(&gstate, uiop, &n)) == 0) {
 uint_t pid;
 int pslot;
 proc_t *p;

 /*
 * Find next entry. Skip processes not visible where
 * this /proc was mounted.
 */
 mutex_enter(&pidlock);
 while (n < v.v_proc &&
 ((p = pid_entry(n)) == NULL || p->p_stat == SIDL ||
 (zoneid != GLOBAL_ZONEID && p->p_zone->zone_id != zoneid) ||
 secpolicy_basic_procinfo(CRED(), p, curproc) != 0))
 n++;
[...]

The f ull list of processes are scanned, and just the local Zone’s processes are returned. This might sound a
bit inef f icient – couldn’t a linked list be added to proc_t so that Zone processes could be walked directly?
Sure, but let’s be data driven.

Here’s the time to read /proc f rom a Zone by the prstat(1M) command, measuring using DTrace:

dtrace -n 'fbt::pr_readdir_procdir:entry /execname == "prstat"/ {
 self->ts = timestamp; } fbt::pr_readdir_procdir:return /self->ts/ {
 @["ns"] = avg(timestamp - self->ts); self->ts = 0; }'
dtrace: descript ion 'fbt::pr_readdir_procdir:entry ' matched 2 probes
^C
 ns 544584

On average, that’s 544 us (microseconds).

Now with an extra 1000 processes in another Zone (which represents a typical dozen extra guests):

dtrace -n 'fbt::pr_readdir_procdir:entry /execname == "prstat"/ {
 self->ts = timestamp; } fbt::pr_readdir_procdir:return /self->ts/ {
 @["ns"] = avg(timestamp - self->ts); self->ts = 0; }'
dtrace: descript ion 'fbt::pr_readdir_procdir:entry ' matched 2 probes
^C
 ns 594254

That added 50 us. For a /proc read – which shouldn’t be hot path. If it is, and 50 us matters, we can look at it
then.

(While I was here, I also checked pidlock, which is, ahem, global. It is not currently a problem. This was also

checked using DTrace.)

Network Throughput Results

I try not to share perf ormance testing results without triple checking numbers, and I don’t have time f or that
right now (this was just supposed to be a quick blog post). I can share some previous numbers f rom a f ew
months ago, when I did have the time to test caref ully and perf orm Active Benchmarking.

This was a series of network throughput and IOPS tests using iperf , to test dif f erences with def ault
installations of 1 Gbyte SmartOS Zones and CentOS KVM instances (Xen wasn’t tested). The client and server
were in the same datacenter, but not on the same physical host, so that the f ull network stack was used.

I should make it clear that these results are not a “max conf ig” f or our cloud. It ’s a minimum config (1 Gbyte
instances). If this were a marketing activity, I’d probably be compelled to test the max conf ig. Which, f or our
SmartOS kernel, will be a lot of work, as it can drive multiple 10 GbE ports at line rate, which requires a lot of
load-generating clients to perf orm.

For these results, YMMV based on workload, platf orm kernel type, and tuning. If you are to use them, think
caref ully about how they would apply, and to what degree. If you workload is CPU- or File System-bound, then
you are probably better of f testing their perf ormance than using these network results.

A typical invocation on the server:

iperf -s -l 128k

And on the client :

iperf -c server -l 128k -P 4 -i 1 -t 30

The thread count (-P) was varied to investigate limits. The f inal result – the average over 30 seconds – was
used.

Throughput

Searching f or the highest Gbits/sec:

source dest threads result suspected limiter

SmartOS 1 GB SmartOS 1 GB 1 2.75
Gbits/sec

client iperf @80% CPU, and network
latency

SmartOS 1 GB SmartOS 1 GB 2 3.32
Gbits/sec

dest iperf up to 19% LAT, and network
latency

SmartOS 1 GB SmartOS 1 GB 4 4.54
Gbits/sec

client iperf over 10% LAT, hitt ing CPU caps

SmartOS 1 GB SmartOS 1 GB 8 1.96
Gbits/sec

client iperf LAT, hitt ing CPU caps

KVM CentOS 1
GB

KVM CentOS 1
GB

1 400
Mbits/sec

network/KVM latency (dest 60% of the 1
VCPU)

KVM CentOS 1
GB

KVM CentOS 1
GB

2 394
Mbits/sec

network/KVM latency (dest 60% of the 1
VCPU)

KVM CentOS 1
GB

KVM CentOS 1
GB

4 388
Mbits/sec

network/KVM latency (dest 60% of the 1
VCPU)

KVM CentOS 1
GB

KVM CentOS 1
GB

8 389
Mbits/sec

network/KVM latency (dest 70% of the 1
VCPU)

http://dtrace.org/blogs/brendan/2012/10/23/active-benchmarking/

The peak Zones perf ormance was 4.54 Gbits/sec with 4 threads. More threads hit the CPU caps f or the 1
Gbyte (small) instance, with the CPU scheduler latency causing TCP breakdown. Larger SmartOS instances
have higher CPU caps, and should be able to take perf ormance f urther.

For the KVM test, these were def ault CentOS instances. I know that with a more modern Linux kernel with
network stack tuning, we can improve throughput much f urther. The most I’ve reached is around 900 Mbits/sec
f or 1 VCPU KVM Linux (this was af ter we tuned KVM up f rom 110 Mbits/sec using a lot of DTrace analysis).
Even at 900 Mbits/sec, it ’s still 5x slower than Zones.

Note the “suspected limiter” column. This is essential to conf irm what was actually tested, and comes f rom
Active Benchmarking. It means I did perf ormance analysis f or every single result (including those not listed here
to save room). In case you are wondering, it took a f ull day to perf orm all tests and analyze each result (again,
using DTrace).

IOPS

Searching f or the highest packets/sec:

source dest threads result suspected limiter

SmartOS 1
GB

SmartOS 1
GB

1 14000
packets/sec

client/dest thread count (each thread about 18% CPU
total)

SmartOS 1
GB

SmartOS 1
GB

2 23000
packets/sec

client/dest thread count

SmartOS 1
GB

SmartOS 1
GB

4 36000
packets/sec

client/dest thread count

SmartOS 1
GB

SmartOS 1
GB

8 60000
packets/sec

client/dest thread count

SmartOS 1
GB

SmartOS 1
GB

16 78000
packets/sec

both client & dest CPU cap

KVM
Centos 1
GB

KVM
Centos 1
GB

1 1180
packets/sec

network/KVM latency, thread count (client thread about
10% CPU)

KVM
Centos 1
GB

KVM
Centos 1
GB

2 2300
packets/sec

network/KVM latency, thread count

KVM
Centos 1
GB

KVM
Centos 1
GB

4 4400
packets/sec

network/KVM latency, thread count

KVM
Centos 1
GB

KVM
Centos 1
GB

8 7900
packets/sec

network/KVM latency, thread count (threads now using
about 30% CPU each; plenty idle)

KVM
Centos 1
GB

KVM
Centos 1
GB

16 13500
packets/sec

network/KVM latency, thread count (~50% idle on both)

KVM
Centos 1
GB

KVM
Centos 1
GB

32 18000
packets/sec

CPU (dest >90% of the 1 VCPU)

In this case, Zones is 4x the packet rate of KVM. As bef ore, the limiting f actor becomes the cloud CPU limits,
and I was only testing small 1 Gbyte servers. Bigger servers get higher CPU quotas, and all of these numbers
should scale higher.

Conclusion

http://dtrace.org/blogs/brendan/2012/08/09/10-performance-wins/

In this post, I summarized perf ormance characteristics of three virtualization technologies – Zones, Xen, and
KVM – and then investigated the I/O path in more detail. Zones add no overhead, whereas Xen and KVM do,
which could limit network throughput to a quarter of what it could be.

By def ault we encourage customers to deploy on Zones, f or reasons of perf ormance, observability, and
simplicity (debuggability). This may mean compiling their applications f or <="" a="">SmartOS (our illumos-based
OS which hosts the Zones) if they aren’t already in the repo. In cases where they absolutely must have Linux or
Windows, and the applications can’t run elsewhere, then it ’s Hardware Virtualization (KVM).

There are more perf ormance characteristics to consider that I didn’t explore here, except brief ly in the summary
table, including how CPU allocation and VCPUs work, how memory allocation works and f ile system caches,
and more. These could be topics f or f ollow up posts.

This post wasn’t supposed to be so much about DTrace, but it ’s the essential tool in so much of our high-
perf ormance work that it would be hard not to mention. We use it to improve overall perf ormance f or Zones
and KVM, to track down latency outliers, explain benchmark results, study the ef f ects of multi- tenancy, and to
improve the perf ormance of applications and the OS.

Posted on January 11, 2013 at 3:58 pm by Brendan Gregg · Permalink In: Cloud · Tagged with: cloud, dtrace,
kvm, perf ormance, xen, zones

« Previous post
Next post »

http://smartos.org/
http://dtrace.org/blogs/brendan/2013/01/11/virtualization-performance-zones-kvm-xen/
http://dtrace.org/blogs/brendan/category/cloud-2/
http://dtrace.org/blogs/brendan/tag/cloud/
http://dtrace.org/blogs/brendan/tag/dtrace-2/
http://dtrace.org/blogs/brendan/tag/kvm/
http://dtrace.org/blogs/brendan/tag/performance-2/
http://dtrace.org/blogs/brendan/tag/xen/
http://dtrace.org/blogs/brendan/tag/zones/
http://dtrace.org/blogs/brendan/2012/12/29/zfsday-zfs-performance-analysis-and-tools/
http://dtrace.org/blogs/brendan/2013/05/19/revealing-hidden-latency-patterns/

	Virtualization Performance: Zones, KVM, Xen
	I/O Path
	Internals
	Network I/O, Zones
	Network I/O, KVM
	Network I/O, Xen
	/proc, Zones

	Network Throughput Results
	Throughput
	IOPS

	Conclusion

