
1

dtrace -n 'syscall:::entry { @[exe

dtrace: description 'syscall:::entry

^C

 iscsitgtd 1

 nscd 1

 operapluginclean 3

 screen-4.0.2 3

 devfsadm 4

 httpd 10

 sendmail 10

 xload 10

 evince 12

 operapluginwrapp 20

 xclock 20

 xntpd 25

 FvwmIconMan 32

 fmd 81

 FvwmPager 170

 dtrace 432

 gnome-terminal 581

 fvwm2 1045

 x64 1833

 akd 2574

 opera 2923

 Xorg 4723

 soffice.bin 5037

DTrace Topics:
Introduction

Brendan Gregg
Sun Microsystems
April 2007

1

2

DTrace Topics: Introduction

• This presentation is an introduction to DTrace, and
is part of the “DTrace Topics” collection.
> Difficulty:
> Audience: Everyone

• These slides cover:
> What DTrace is
> What DTrace is for
> Who uses DTrace
> DTrace Essentials
> Usage Features

3

What is DTrace

• DTrace is a dynamic troubleshooting and analysis
tool first introduced in the Solaris 10 and
OpenSolaris operating systems.
• DTrace is many things, in particular:
> A tool
> A programming language interpreter
> An instrumentation framework

• DTrace provides observability across the entire
software stack from one tool. This allows you to
examine software execution like never before.

4

DTrace example #1

• Tracing new processes system-wide,

System calls are only one layer of the software stack.

dtrace -n 'syscall::exece:return { trace(execname); }'

dtrace: description 'syscall::exece:return ' matched 1 probe

CPU ID FUNCTION:NAME

 0 76044 exece:return man

 0 76044 exece:return sh

 0 76044 exece:return neqn

 0 76044 exece:return tbl

 0 76044 exece:return nroff

 0 76044 exece:return col

 0 76044 exece:return sh

 0 76044 exece:return mv

 0 76044 exece:return sh

 0 76044 exece:return more

5

The Entire Software Stack

• How did you analyse these?

Kernel
Memory
allocation SchedulerDevice Drivers

Syscall Interface

Libraries

User Executable

Dynamic Languages

Hardware

Examples:

Java, JavaScript, ...

/usr/bin/*

/usr/lib/*

VFS, DNLC, UFS,
ZFS, TCP, IP, ...
sd, st, hme, eri, ...

man -s2

disk data controller

File Systems

6

The Entire Software Stack

• It was possible, but difficult.

Kernel
Memory
allocation SchedulerDevice Drivers

Syscall Interface

Libraries

User Executable

Dynamic Languages

Hardware

Previously:

debuggers

truss -ua.out

apptrace, sotruss

prex; tnf*
lockstat
mdb

truss

kstat, PICs, guesswork

File Systems

7

The Entire Software Stack

• DTrace is all seeing:

Kernel
Memory
allocation SchedulerDevice Drivers

Syscall Interface

Libraries

User Executable

Dynamic Languages

Hardware

DTrace visibility:

Yes, with providers

Yes

Yes

Yes

Yes

No. Indirectly, yes

File Systems

8

What DTrace is like

• DTrace has the combined capabilities of numerous
previous tools and more,

Plus a programming language similar to C and awk.

Tool Capability

 truss -ua.out tracing user functions

 apptrace tracing library calls

 truss tracing system calls
 prex; tnf* tracing some kernel functions

 lockstat profiling the kernel

 mdb -k accessing kernel VM

 mdb -p accessing process VM

9

Syscall Example

• Using truss,

$ truss date

execve("/usr/bin/date", 0x08047C9C, 0x08047CA4) argc = 1

resolvepath("/usr/lib/ld.so.1", "/lib/ld.so.1", 1023) = 12

resolvepath("/usr/bin/date", "/usr/bin/date", 1023) = 13

xstat(2, "/usr/bin/date", 0x08047A58) = 0

open("/var/ld/ld.config", O_RDONLY) = 3

fxstat(2, 3, 0x08047988) = 0

mmap(0x00000000, 152, PROT_READ, MAP_SHARED, 3, 0) = 0xFEFB0000

close(3) = 0

mmap(0x00000000, 4096, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_ANON, -1

sysconfig(_CONFIG_PAGESIZE) = 4096

[...]

Only examine 1 process

Output is
limited to
provided
options

truss slows down the target

10

Syscall Example

• Using DTrace,

dtrace -n 'syscall:::entry { printf("%16s %x %x", execname, arg0, arg1); }'

dtrace: description 'syscall:::entry ' matched 233 probes

CPU ID FUNCTION:NAME

 1 75943 read:entry Xorg f 8047130

 1 76211 setitimer:entry Xorg 0 8047610

 1 76143 writev:entry Xorg 22 80477f8

 1 76255 pollsys:entry Xorg 8046da0 1a

 1 75943 read:entry Xorg 22 85121b0

 1 76035 ioctl:entry soffice.bin 6 5301

 1 76035 ioctl:entry soffice.bin 6 5301

 1 76255 pollsys:entry soffice.bin 8047530 2

[...]

You choose the output

Watch every processMinimum performance cost

11

What is DTrace for

• Troubleshooting software bugs
> Proving what the problem is, and isn't.
> Measuring the magnitude of the problem.

• Detailed observability
> Observing devices, such as disk or network activity.
> Observing applications, whether they are from Sun,

3rd party, or in-house.

• Capturing profiling data for performance analysis
> If there is latency somewhere, DTrace can find it

12

What isn't DTrace

• DTrace isn't a replacement for kstat or SMNP
> kstat already provides inexpensive long term monitoring.

• DTrace isn't sentient, it needs to borrow your brain
to do the thinking
• DTrace isn't “dTrace”

13

Who is DTrace for

• Application Developers
> Fetch in-flight profiling data without restarting the apps,

even on customer production servers.
> Detailed visibility of all the functions that they wrote, and

the rest of the software stack.
> Add static probes as a stable debug interface.

• Application Support
> Provides a comprehensive insight into application

behavior.
> Analyse faults and root-cause performance issues.
> Prove where issues are, and measure their magnitude.

14

Who is DTrace for

• System Administrators
> Troubleshoot, analyse, investigate where never before.
> See more of your system; fills in many observability

gaps.

• Database Administrators
> Analyse throughput performance issues across all

system components.

• Security Administrators
> Customised short-term auditing
> Malware deciphering

15

Who is DTrace for

• Kernel Engineers
> Fetch kernel trace data from almost every function.
> Function arguments are auto-casted providing access to

all struct members.
> Fetch nanosecond timestamps for function execution.
> Troubleshoot device drivers, including during boot.
> Add statically defined trace points for debugging.

16

How to use DTrace

• DTrace can be used by either,
> Running prewritten one-liners and scripts

– DTrace one-liners are easy to use and often useful,
http://www.solarisinternals.com/dtrace

– The DTraceToolkit contains over 100 scripts ready to run,
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit

> Writing your own one-liners and scripts
– Encouraged - the possibilities are endless
– It helps to know C
– It can help to know operating system fundamentals

17

DTrace wins

• Finding unnecessary work
> Having deep visibility often finds work being performed

that isn't needed. Eliminating this can produce the
biggest DTrace wins – 2x, 20x, etc.

• Solving performance issues
> Being able to measure where the latencies are, and

show what their costs are. These can produce typical
performance wins – 5%, 10%, etc.

18

DTrace wins

• Finding bugs
> Many bugs are found though static debug frameworks;

DTrace is a dynamic framework that allows custom and
comprehensive debug info to be fetched when needed.

• Proving performance issues
> Many valuable DTrace wins have no immediate percent

improvement, they are about gathering evidence to prove
the existence and magnitude of issues.

19

Example scenario: The past

• Take a performance issue on a complex customer
system,

• With previous observability tools, customers could
often find problems but not take the measurements
needed to prove that they found the problem.
> What is the latency cost for this issue? As a percent?

Customer:
“Why is our system slow?”

20

Example scenario: The past

• The “blame wheel”

Application Vendor:
“The real problem
 may be the database.”

Database Vendor:
“The real problem
 may be the OS.”

OS Vendor:
“The real problem may be the application.”

21

Example scenario: The past

• The lack of proof can mean stalemate.

Customer:
“I think I've found the issue
 in the application code.”

Application Vendor:
“That issue is costly to fix.
 We are happy to fix it, so long as
 you can prove that this is the issue.”

22

Example scenario: The future
A happy ending

• With DTrace, all players can examine all of the
software themselves.

– Example: “80% of the average transaction time is spent in the
application waiting for user-level locks.”

Customer:
“I measured the problem,
 it is in the application.”

Application Vendor:
“I'd better fix that right away.”

23

Example scenario: The future
An alternate happy ending for application vendors

– Example: “80% of our average transaction time is consumed by
a bug in libc.”

OS Vendor:
“We'd better fix that right away.”

Application Vendor:
“We measured the problem
 and found it was in the OS.”

24

Answers to initial questions

• DTrace is not available for Solaris 9.
• You need to be root, or have the correct privileges,

to run /usr/sbin/dtrace.
• There is a GUI called chime.
• DTrace is safe for production use, provided you

don't deliberately try to cause harm.
• DTrace has low impact when in use, and zero

impact when not.

25

What's next:

• We just covered,
> What DTrace is
> What DTrace is for
> Who uses DTrace

• Next up is,
> DTrace Essentials
> Usage Features

26

Terminology

• Example #1

dtrace -n 'syscall::exece:return { trace(execname); }'

dtrace: description 'syscall::exece:return ' matched 1 probe

CPU ID FUNCTION:NAME

 0 76044 exece:return man

 0 76044 exece:return sh

 0 76044 exece:return neqn

 0 76044 exece:return tbl

 0 76044 exece:return nroff

[...]

consumer probe action

27

Consumer

• Consumers of libdtrace(3LIB),
dtrace command line and scripting interface
lockstat kernel lock statistics
plockstat user-level lock statistics
intrstat run-time interrupt statistics

• libdtrace is currently a private interface and not to
be used directly (nor is there any great reason to);
the supported interface is dtrace(1M).
> NOTE: You are still encouraged to use libkstat(3LIB) and

proc(4) directly, rather than wrapping /usr/bin consumers.

28

Privileges

• Non-root users need certain DTrace privileges to be
able to use DTrace.
• These privileges are from the Solaris 10 “Least

Privilege” feature.

$ id

uid=1001(user1) gid=1(other)

$ /usr/sbin/dtrace -n 'syscall::exece:return'

dtrace: failed to initialize dtrace: DTrace requires additional privileges

29

Probes

• Data is generated from instrumentation points called
“probes”.
• DTrace provides thousands of probes.
• Probe examples:

Probe Name Description
syscall::read:entry A read() syscall began
proc:::exec-success A process created successfully
io:::start An I/O was issued (disk/vol/NFS)
io:::done An I/O completed

30

Probe Names

• Probe names are a four-tuple,

> Provider A library of related probes.
> Module The module the function belongs to,

either a kernel module or user segment.
> Function The function name that contains the probe.
> Name The name of the probe.

syscall::exece:return

Provider Module Function Name

31

Listing Probes

• dtrace -l lists all currently available probes that
you have privilege to see, with one probe per line,

• Here the root user sees 69,879 available probes.
• The probe count changes – it is dynamic (DTrace).

dtrace -l

 ID PROVIDER MODULE FUNCTION NAME

 1 dtrace BEGIN

 2 dtrace END

 3 dtrace ERROR

 4 sched FX fx_yield schedctl-yi

[...]

dtrace -l | wc -l

 69880

32

Tracing Probes

• dtrace -n takes a probe name and enables tracing,

• The default output contains,
– CPU CPU id that event occurred on (if this

changes, the output may be shuffled)
– ID DTrace probe id
– FUNCTION:NAME Part of the probe name

dtrace -n syscall::exece:return

dtrace: description 'syscall::exece:return' matched 1 probe

CPU ID FUNCTION:NAME

 0 76044 exece:return

 0 76044 exece:return

^C

33

Providers

• Examples of providers,

Provider Description
syscall system call entries and returns
proc process and thread events
sched kernel scheduling events
sysinfo system statistic events
vminfo virtual memory events
io system I/O events
profile fixed rate sampling
pid user-level tracing
fbt raw kernel tracing

34

Providers

• Example of probes,

Provider Example probe
syscall syscall::read:entry
proc proc:::exec-success
sched sched:::on-cpu
sysinfo sysinfo:::readch
vminfo vminfo:::maj_fault
io io:::start
profile profile:::profile-1000hz
pid pid172:libc:fopen:entry
 pid172:a.out:main:entry
fbt fbt::bdev_strategy:entry

35

Providers

• Providers are documented in the DTrace Guide as
separate chapters.
• Providers are dynamic; the number of available

probes can vary.
• Some providers are “unstable interface”, such as
fbt and sdt.
> This means that their probes, while useful, may vary in

name and arguments between Solaris versions.
> Try to use stable providers instead (if possible).

36

Provider Documentation

• Some providers assume a little background
knowledge, other providers assume a lot. Knowing
where to find supporting documentation is
important.
• Where do you find documentation on,
> Syscalls?
> User Libraries?
> Application Code?
> Kernel functions?

37

Provider Documentation

• Additional documentation may be found here,

Target Provider Additional Docs
syscalls syscall man(2)
libraries pid:lib* man(3C)
app code pid:a.out source code?
raw kernel fbt Solaris Internals 2nd Ed,

http://cvs.opensolaris.org

38

Actions

• When a probe fires, an action executes.
• Actions are written in the D programming language.
• Actions can,
> print output
> save data to variables, and perform calculations
> walk kernel or process memory

• With destruction actions allowed, actions can,
> raise signals on processes
> execute shell commands
> write to some areas of memory

39

trace() Example

• The trace() action accepts one argument and prints
it when the probe fired.

dtrace -n 'syscall::exece:return { trace(execname); }'

dtrace: description 'syscall::exece:return ' matched 1 probe

CPU ID FUNCTION:NAME

 0 76044 exece:return man

 0 76044 exece:return sh

 0 76044 exece:return neqn

 0 76044 exece:return tbl

 0 76044 exece:return nroff

 0 76044 exece:return col

[...]

40

printf() Example

• DTrace ships with a powerful printf(), to print
formatted output.

dtrace -n 'syscall::exece:return { printf("%6d %s\n", pid, execname); }'

dtrace: description 'syscall::exece:return ' matched 1 probe

CPU ID FUNCTION:NAME

 0 74415 exece:return 4301 sh

 0 74415 exece:return 4304 neqn

 0 74415 exece:return 4305 nroff

 0 74415 exece:return 4306 sh

 0 74415 exece:return 4308 sh

[...]

41

Default Variables

• Numerous predefined variables can be used, e.g.,
> pid, tid Process ID, Thread ID
> timestamp Nanosecond timestamp since boot
> probefunc Probe function name (3rd field)
> execname Process name
> arg0, ... Function arguments and return value
> errno Last syscall failure error code
> curpsinfo Struct containing current process info, e.g.,

 curpsinfo->pr_psargs – process + args

• Pointers and structs! DTrace can walk memory
using C syntax, and has kernel types predefined.

42

curthread

• curthread is a pointer to current kthread_t

 From here you can walk kernel memory and answer
endless questions about OS internals.
• E.g., the current process user_t is,

 curthread->t_procp->p_user
• You might not ever use curthread, but it is good to

know that you can. (And there are other ways to get
inside the kernel). Opinion:

curthread is like the down staircase
in nethack, angband, moria, ...

43

Variable Types

• DTrace supports the following variable types
> Integers
> Structs
> Pointers
> Strings
> Associative arrays
> Aggregates

• Including types from /usr/include/sys, e.g. uint32_t.

44

Aggregations

• A great feature of DTrace is to process data as it is
captured, such as using aggregations.
• E.g., frequency counting syscalls,

@num is the aggregation variable, probefunc is the key,
and count() is the aggregating function.

dtrace -n 'syscall:::entry { @num[probefunc] = count(); }'

dtrace: description 'syscall:::entry ' matched 233 probes

^C

[...]

 writev 170

 write 257

 read 896

 pollsys 959

 ioctl 1253

45

Aggregating Functions

• These include,
> count() count events, useful for frequency counts
> sum(value) sum the value
> avg(value) average the value
> min(value) find the value minimum
> max(value) find the value maximum
> quantize(value) print power-2 distribution plots

46

Quantize

• Very cool function, here we quantize write sizes:

• Here we see that ls processes usually write
between 32 and 127 bytes. Makes sense?

dtrace -n 'sysinfo:::writech { @dist[execname] = quantize(arg0); }'

dtrace: description 'sysinfo:::writech ' matched 4 probes

^C

[...]

 ls

 value ------------- Distribution ------------- count

 4 | 0

 8 | 2

 16 | 0

 32 |@@@@@@@@@@@@@@@@@@@ 118

 64 |@@@@@@@@@@@@@@@@@@@@@ 127

 128 | 0

[...]

47

ls -l

ls writes one line at a time, each around 80 chars long.

ls -l /etc

dttotal 793

lrwxrwxrwx 1 root root 12 Mar 21 03:28 TIMEZONE -> default/init

drwxr-xr-x 4 root sys 6 Apr 16 06:59 X11

drwxr-xr-x 2 adm adm 3 Mar 20 09:25 acct

drwxr-xr-x 3 root root 3 Apr 16 23:11 ak

lrwxrwxrwx 1 root root 12 Mar 21 03:28 aliases -> mail/aliases

drwxr-xr-x 5 root sys 5 Feb 20 23:29 amd64

drwxr-xr-x 7 root bin 18 Mar 20 09:20 apache

drwxr-xr-x 4 root bin 7 Feb 20 23:12 apache2

drwxr-xr-x 2 root sys 5 Feb 20 23:27 apoc

-rw-r--r-- 1 root bin 1012 Mar 20 09:33 auto_home

-rw-r--r-- 1 root bin 1066 Mar 20 09:33 auto_master

lrwxrwxrwx 1 root root 16 Mar 21 03:28 autopush -> ../sbin/autopu

[...]

48

Predicates

• DTrace predicates are used to filter probes, so that
the action fires when a conditional is true.

probename /predicate/ { action }

• E.g., syscalls for processes called “bash”,
dtrace -n 'syscall:::entry /execname == "bash"/ { @num[probefunc] =
count(); }'

dtrace: description 'syscall:::entry ' matched 233 probes

^C

 exece 2

[...]

 read 29

 write 31

 lwp_sigmask 42

 sigaction 62

49

Scripting

• If your one-liners get too long, write scripts. E.g.,
bash-syscalls.d,

• Getting it running,

#!/usr/sbin/dtrace -s

syscall:::entry

/execname == "bash"/

{

 @num[probefunc] = count();

}

chmod 755 bash-syscalls.d

./bash-syscalls.d

dtrace: script './bash-syscalls.d' matched 233 probes

[...]

50

What's next:

• We just covered,
> What DTrace is
> What DTrace is for
> Who uses DTrace
> DTrace Essentials

• Next up is,
> Usage Features

51

Measuring Time

• Access to high resolution timestamps is of particular
use for performance analysis.
> timestamp time since boot in nanoseconds
> vtimestamp thread on-CPU timestamp

• Measuring these for application and operating
system function calls will answer:
> timestamp where is the latency?
> vtimestamp why are the CPUs busy?

52

Printing Stacks

• Printing user and kernel stack traces explains both
why and the how something happened.
• Why is bash calling read()? Using ustack(),
dtrace -n 'syscall::read:entry /execname == "bash"/ { ustack(); }'

dtrace: description 'syscall::read:entry ' matched 1 probe

CPU ID FUNCTION:NAME

 0 74314 read:entry

 libc.so.1`_read+0x7

 bash`rl_getc+0x22

 bash`rl_read_key+0xad

 bash`readline_internal_char+0x5f

 bash`0x80b1171

 bash`0x80b118c

 bash`readline+0x3a

[...] Ahh, readline()

53

Sampling

• DTrace isn't just about tracing events, DTrace can
also sample at customised rates.
• E.g., sampling 5-level user stack traces from Xorg,
dtrace -n 'profile-1001 /execname == "Xorg"/ { @[ustack(5)] = count(); }'

dtrace: description 'profile-1001 ' matched 1 probe

^C

 libfb.so`fbSolid+0x2c6

 libfb.so`fbFill+0xb8

 libfb.so`fbPolyFillRect+0x1d5

 nvidia_drv.so`0xfe09e87b

 Xorg`miColorRects+0x124

 41

 nvidia_drv.so`_nv000592X+0x3d

 0x1016c00

 87

nvidia was on-CPU
87 times

54

End of Intro

• DTrace is a big topic, but you don't need to know it
all to get value from DTrace.
• To learn more, browse “DTrace Topics”,

http://www.solarisinternals.com/dtrace.

Here you will find,
> A wiki version of this presentation
> The PDF for this presentation
> dozens of other DTrace Topics (e.g., one-liners!)

• Also see the “Solaris Performance and Tools” book,
http://www.sun.com/books/catalog/solaris_perf_tools.xml

55

See Also

• DTrace home,
http://www.opensolaris.org/os/community/dtrace
> Main site of links
> dtrace-discuss mailing list

• Team DTrace blogs,
> http://blogs.sun.com/bmc
> http://blogs.sun.com/mws
> http://blogs.sun.com/ahl

56

dtrace:::END

Brendan Gregg
Brendan@sun.com

56

