
ALEX MAESTRETTI - MANAGER, SIRT
BRENDAN GREGG - Sr ARCHITECT, PERFORMANCE

Security
Monitoring with
eBPF

The Brief.
Extended Berkley Packet Filter (eBPF) is a
new Linux feature which allows safe and
efficient monitoring of kernel functions. This
has dramatic implications for security
monitoring, especially at Netflix scale. We are
encouraging the security community to
leverage this new technology to all of our
benefit.

There are many security monitoring solutions
available today that meet a wide range of
requirements. Our design goals were: push vs
poll, lightweight, with kernel-level inspection.
Our environment is composed of
micro-services running on ephemeral and
immutable instances built and deployed from
source control into a public cloud.

Existing
Solutions.

auditd

osquery ossec

sysdig

A new
Option.

SCREENSHOT
1

capable
TIME UID PID COMM CAP NAME AUDIT
22:11:23 114 2676 snmpd 12 CAP_NET_ADMIN 1
22:11:23 0 6990 run 24 CAP_SYS_RESOURCE 1
22:11:23 0 7003 chmod 3 CAP_FOWNER 1
22:11:23 0 7003 chmod 4 CAP_FSETID 1
22:11:23 0 7005 chmod 4 CAP_FSETID 1
22:11:23 0 7005 chmod 4 CAP_FSETID 1
22:11:23 0 7006 chown 4 CAP_FSETID 1
22:11:23 0 7006 chown 4 CAP_FSETID 1
22:11:23 0 6990 setuidgid 6 CAP_SETGID 1
22:11:23 0 6990 setuidgid 6 CAP_SETGID 1
22:11:23 0 6990 setuidgid 7 CAP_SETUID 1
22:11:24 0 7013 run 24 CAP_SYS_RESOURCE 1
22:11:24 0 7026 chmod 3 CAP_FOWNER 1
22:11:24 0 7026 chmod 4 CAP_FSETID 1
[...]

Snooping on Linux cap_capable() calls using bcc/eBPF

SCREENSHOT
2

argdist -i 5 -C 'p::cap_capable():int:ctx->dx'
[06:32:08]
p::cap_capable():int:ctx->dx

COUNT EVENT
2 ctx->dx = 35
5 ctx->dx = 21
83 ctx->dx = 12

[06:32:13]
p::cap_capable():int:ctx->dx

COUNT EVENT
1 ctx->dx = 1
7 ctx->dx = 21
82 ctx->dx = 12

[...]

Now frequency counting in-kernel
and only sending the summary to user

eBPF is much more than just a per-event tracer
(this is a bcc/eBPF hack; I should make this into a real tool like the previous one)

LINUX TRACING
TIMELINE

● 2004: kprobes (2.6.9)
● 2005: DTrace (not Linux); SystemTap (out-of-tree)
● 2008: ftrace (2.6.27)
● 2009: perf_events (2.6.31)
● 2009: tracepoints (2.6.32)
● 2010-2016: ftrace & perf_events enhancements
● 2012: uprobes (3.5)
● 2014-2016: Enhanced BPF patches

+ other out of tree tracers
LTTng, ktap, sysdig, ...

KERNEL INSTRUMENTATION USING KPROBES
PHRACK ZINE #67/6 2010-11-17

1 - Introduction
1.1 - Why write it?
1.2 - About kprobes
1.3 - Jprobe example
1.4 - Kretprobe example & Return probe patching technique

2 - Kprobes implementation
2.1 - Kprobe implementation
2.2 - Jprobe implementation
2.3 - File hiding with jprobes/kretprobes and modifying kernel .text
2.4 - Kretprobe implementation
2.5 - A quick stop into modifying read-only kernel segments
2.6 - An idea for a kretprobe implementation for hackers

3 - Patch to unpatch W^X (mprotect/mmap restrictions)
4 - Notes on rootkit detection for kprobes
5 - Summing it all up.
6 - Greetz
7 - References and citations
8 - Code

http://phrack.org/issues/67/6.html
(also see http://phrack.org/issues/63/3.html)

"So why write this? Because...
we are hackers. Hackers should
be aware of any and all
resources available to them --
some more auspicious than
others -- Nonetheless, kprobes
are a sweet deal when you
consider that they are a
native kernel API…"

BERKELEY PACKET
FILTER

tcpdump host 127.0.0.1 and port 22 -d
(000) ldh [12]
(001) jeq #0x800 jt 2 jf 18
(002) ld [26]
(003) jeq #0x7f000001 jt 6 jf 4
(004) ld [30]
(005) jeq #0x7f000001 jt 6 jf 18
(006) ldb [23]
(007) jeq #0x84 jt 10 jf 8
(008) jeq #0x6 jt 10 jf 9
(009) jeq #0x11 jt 10 jf 18
(010) ldh [20]
(011) jset #0x1fff jt 18 jf 12
(012) ldxb 4*([14]&0xf)
[...]

User-defined bytecode
executed by an in-kernel

sandboxed virtual machine

Steven McCanne and Van Jacobson, 1993

2 x 32-bit registers
& scratch memory

ENHANCED BPF
(eBPF)

There are front-ends (eg, bcc) so we never have to write such raw eBPF

Alexei Starovoitov, 2015+

10 x 64-bit registers
maps (hashes)

actions

eBPF USE
CASES

…

BPF SECURITY
MODULE

…

WHAT TO
MONITOR

Trace low-frequency
events wherever
possible to lower
overhead

Eg, TCP
connection
init; not TCP
send/receive

BCC
EXAMPLES

These bcc/BPF
observability
tools show
what is possible

SCREENSHOT
3

./execsnoop -x
PCOMM PID RET ARGS
supervise 9661 0 ./run
mkdir 9662 0 /bin/mkdir -p ./main
run 9663 0 ./run
chown 9664 0 /bin/chown nobody:nobody ./main
run 9665 0 /bin/mkdir -p ./main
run 9660 -2 /usr/local/bin/setuidgid nobody
[...]

./tcpconnect -t
TIME(s) PID COMM IP SADDR DADDR DPORT
31.871 2482 local_agent 4 10.103.219.236 10.251.148.38 7001
31.874 2482 local_agent 4 10.103.219.236 10.101.3.132 7001
31.878 2482 local_agent 4 10.103.219.236 10.171.133.98 7101
90.917 2482 local_agent 4 10.103.219.236 10.251.148.38 7001
90.928 2482 local_agent 4 10.103.219.236 10.102.64.230 7001
[...]

From the bcc collection

INSTRUMENTATION
TECHNIQUES

Use the stable-ist API possible

In order of preference:

Kernel events
a. Tracepoints: stable API, if available.
b. Kprobes: dynamic tracing of security hooks
c. Kprobes: dynamic tracing of kernel functions

User events
d. User Statically Defined Tracing (USDT) probes: stable API, if available
e. Uprobes: dynamic tracing of API interface functions
f. Uprobes: dynamic tracing of internal functions

WHY eBPF
ROCKS

Safe
○ Kernel verifies eBPF code (DAG and null reference check)
○ Kernel memory access controlled through helper functions
○ Part of the mainline kernel, no 3rd party kernel modules

Flexible
○ Add new instrumentation to production servers anytime
○ Any event, any data

Performant
○ JIT’d instrumentation
○ Data from kernel to user via async maps or per-events on a

ring buffer
○ Custom filters and summaries in kernel
○ Can choose lower-frequency events to trace Preliminary results of logging TCP accept() to

the file system, with a certain workload, and
comparing overheads. Active benchmarking

was performed. Each of these can likely be
tuned further: results are not final.

eBPF EFFICIENCY

Old way: packet capture

New way: dynamic tracing

Eg, tracing TCP retransmits

WRITING A
bcc/eBPF PROGRAM

BPF Compiler Collection
github.com/iovisor/bcc/

What is in a bcc eBPF Python file:
● Python code for userland reporting
● eBPF C code for event handling, in a variable (or file)
● BCC calls to initialize BPF and probes

bitehist.py example

ADVANCED eBPF

It gets more complicated...

from tcpaccept.py

Summary.

MONITORING TO
DETECTION

Thank you.

Bonus round.

WHAT’S YOUR
SIGN (SYMBOL)

● Example: I want to detect unusual listening ports
and what process has bound them.

● Let’s look at the socket lifecycle…
○ socket() is too early, no port yet
○ bind() and listen() are good candidates
○ if access is the only concern, accept()

● We can find kernel symbols a number of ways
○ List them: sudo cat /proc/kallsyms
○ Use perf-tools to trace ex. nc -l 12345

usna.edu

● inet_ is the subsystem hooked in BCC examples
and seems to have the context we need… but is not
guaranteed stable across Linux builds.

PROTIP:
HOOK THE LSM

Most of the relevant functions we care about are already passing through the LSM (with good context), let’s
Kprobe there (if we can’t find a tracepoint) as it will be more stable:

/include/linux/security.h

The end end.

