
Visualizing Performance
The Developer’s Guide to Flame Graphs

Brendan Gregg
Intel Fellow
Dec 2022

YOW! 2022

Statement from the heart

I’d like to begin by acknowledging the Traditional Owners of this land and pay my
respects to Elders past and present.

3

My Dream

To Completely Understand
the Performance of Everything

4

Flame Graphs

A visualization of software

Can also visualize CPU and
other resource usage

Now a staple in performance
engineering

Kernel

Java

User-level

5

2. CPU Flame graphs

3. Stacks & Symbols 4. Advanced flame graphs

1. Implementations

Agenda

6

1. Interpret CPU flame graphs

2. Understand runtime challenges

3. Why eBPF for advanced flame graphs

A new tool to lower your cost, latency, and carbon

Take Aways

Slides online:
https://www.brendangregg.com/Slides/YOW2022_flame_graphs.pdf

1. IMPLEMENTATIONS

8

Quick Tour of Some Examples

More examples in later “bonus slides” section.

(Note: This is not an an endorsement of any company/product or sponsored by anyone.)

9

My original flamegraph.pl (2011; using Perl/SVG/JavaScript)

https://github.com/brendangregg/FlameGraph

10

Martin Spier d3-flame-graph (my colleague at Netflix; 2015; D3)

Source: https://github.com/spiermar/d3-flame-graph https://martinspier.io/

11

Facebook: Strobelight (2014)

Source: https://tracingsummit.org/ts/2014/files/TracingSummit2014-Tracing-at-Facebook-Scale.pdf

12

Node.js: 0x (2016)

Source: https://github.com/davidmarkclements/0x (David Mark Clements)

13

Qt: Creator (2016)

Source: https://www.qt.io/blog/2016/05/11/qt-creator-4-0-0-released

14

Python: vprof (2016)

Source: https://github.com/nvdv/vprof (Nick Volynets)

15

Microsoft: WPA / ETW (2016)

Source: https://learn.microsoft.com/en-us/windows-hardware/test/wpt/graphs#flame_graphs

16

LinkedIn: ODP (2017)

Source: https://engineering.linkedin.com/blog/2017/01/odp--an-infrastructure-for-on-demand-service-
profiling

17

Oracle: Developer Studio Performance Analyzer (2017)

Source: https://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/
o11-151-perf-analyzer-brief-1405338.pdf

18

Windows: PerfView (2017)

Source: https://github.com/Microsoft/perfview/pull/440 (Adam Sitnik)

19

Google: pprof (2017)

Source: https://github.com/google/pprof/pull/188 (Martin Spier)

20

Linux: hotspot (2017)

Source: https://github.com/KDAB/hotspot (Milian Wolff)

21

Eclipse Foundation: TraceCompass (2018)

Source: https://www.eclipse.org/tracecompass/index.html

22

Java: Java Mission Control (2018)

Source: https://github.com/thegreystone/jmc-flame-view (Marcus Hirt)

23

Netflix: FlameScope (2018)

Source: https://netflixtechblog.com/netflix-flamescope-a57ca19d47bb (Brendan Gregg, Martin Spier)

24

Netflix: FlameCommander (2019)

Source: https://www.youtube.com/watch?v=L58GrWcrD00 (Martin Spier, Jason Koch, Susie Xia, Brendan Gregg)

25

AMD: uProf (2019)

Source: https://developer.amd.com/amd-uprof/?sf215410082=1

26

Java: YourKit (2019)

Source: https://www.yourkit.com/docs/java/help/cpu_flame_graph.jsp

27

Java: IntelliJ IDEA (2019)

Source: https://blog.jetbrains.com/idea/2019/06/intellij-idea-2019-2-eap-4-profiling-tools-structural-search-
preview-and-more/

28

Firefox: Profiler (2019)

Source: https://profiler.firefox.com

29

Linux: perf script flamegraph (2020)

Source: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/
monitoring_and_managing_system_status_and_performance/getting-started-with-
flamegraphs_monitoring-and-managing-system-status-and-performance (Andreas Gerstmayr)

30

MathWorks: MATLAB Profiler (2020)

Source: https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html

31

AWS: CodeGuru (2020)

Source: https://aws.amazon.com/codeguru/features/

32

Google: Cloud Profiler (2020)

Source: https://cloud.google.com/profiler/docs/focusing-profiles

33

Intel: vTune (2021)

Source: https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/
user-interface-reference/window-flame-graph.html

34

Splunk: AlwaysOn Profiling flame graph (2021)

Source: https://docs.splunk.com/Observability/apm/profiling/using-the-flamegraph.html

35

New Relic: flame graphs (2021)

Source: https://docs.newrelic.com/whats-new/2021/07/whats-new-july-8-realtime-profiling-java/

36

DataDog: profiling flame graph (2021)

Source: https://www.datadoghq.com/knowledge-center/distributed-tracing/flame-graph/

37

Granulate: gprofiler (2022; now Intel)

Source: https://docs.gprofiler.io/about-gprofiler/gprofiler-features/views/flame-graph

38

Microsoft Visual Studio: Flame Graph (2022)

Source: https://learn.microsoft.com/en-us/visualstudio/profiling/flame-graph

39

GrafanaLabs: Grafana flame graph (2022)

Source: https://grafana.com/docs/grafana/next/panels-visualizations/visualizations/flame-graph

40

Flame Graph Adoption

Implementations: >80
Related open source projects: >400
Commercial product adoptions: >30
New startups: 4 (so far)
Startup exits: 1 (so far)
Industry investment: >AUD$1B
End users: ? (a lot)

2. CPU PROFILING
An Introduction to Flame Graphs

42

Stack Traces

A code path snapshot. e.g., from jstack(1):

$ jstack 1819

[…]

"main" prio=10 tid=0x00007ff304009000
nid=0x7361 runnable [0x00007ff30d4f9000]

 java.lang.Thread.State: RUNNABLE

at Func_abc.func_c(Func_abc.java:6)

at Func_abc.func_b(Func_abc.java:16)

at Func_abc.func_a(Func_abc.java:23)

at Func_abc.main(Func_abc.java:27)

running
parent
g.parent
g.g.parent

43

CPU Profiling
Record stacks at a timed interval
• Pros: Low (deterministic) overhead
• Cons: Coarse accuracy, but usually sufficient

A
B

block interrupt

on-CPU off-CPU

A
B
A A

B
A

syscall

time

stack
samples: A

44

Stack Samples

a()

b() h()

c()

d()

e() f()

g()

i()

a() a()

b()

c()

d()

a()

b()

c()

d()

a()

b()

c()

d()

a()

b()

c()

d()

h()

i()

a()

f()

g()

f()

g()

Time

S
ta

ck
 D

e
pt

h

45

Stack Samples

a()

b() h()

c()

d()

e() f()

g()

i()

a() a()

b()

c()

d()

a()

b()

c()

d()

a()

b()

c()

d()

a()

b()

c()

d()

h()

i()

a()

f()

g()

f()

g()

Time

S
ta

ck
 D

e
pt

h

46

Stack Samples

a()

b() h()

c()

d()

e() f()

g()

i()

a() a()

b()

c()

d()

a()

b()

c()

d()

a()

b()

c()

d()

a()

b()

c()

d()

h()

i()

a()

f()

g()

f()

g()

Time

S
ta

ck
 D

e
pt

h

47

Example Profile (“hair graph”)

48

Stack Samples: Merged

a()

b() h()

c()

d()

e() f()

g()

i()

b()

c()

d()

b()

c()

d()

h()

i()

f()

g()

Time

S
ta

ck
 D

e
pt

h

49

Example Profile: Merged

50

Alphabet Sort

a()

b() h()

c()

d()

e() f()

g()

i()

a()a()

b()

c()

d()

a()

b()

c()

d()

a()

b()

c()

d()

a()

b()

c()

d()

h()

i()

a()

f()

g()

f()

g()

Alphabet

S
ta

ck
 D

e
pt

h

51

Alphabet Merged (“Flame Graph”)

a()

b()

c()

e() f()

g()

d()

h()

i()

Alphabet

S
ta

ck
 D

e
pt

h

52

Example Profile: Flame Graph

53

Example Profile: Flame Graph (with code hues)

54

Replay 1/3: Time Columns

55

Replay 2/3: Time Merged (aka “Flame Chart”)

56

Replay 3/3: Flame Graph

57

Origin (2011): CPU Profiling
dtrace -x ustackframes=100 -n 'profile-997 /execname == "mysqld"/ {
 @[ustack()] = count(); } tick-60s { exit(0); }'
[… over 500,000 lines truncated …]

 libc.so.1`__priocntlset+0xa
 libc.so.1`getparam+0x83
 libc.so.1`pthread_getschedparam+0x3c
 libc.so.1`pthread_setschedprio+0x1f
 mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x9ab
 mysqld`_Z10do_commandP3THD+0x198
 mysqld`handle_one_connection+0x1a6
 libc.so.1`_thrp_setup+0x8d
 libc.so.1`_lwp_start
 4884

 mysqld`_Z13add_to_statusP17system_status_varS0_+0x47
 mysqld`_Z22calc_sum_of_all_statusP17system_status_var+0x67
 mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x1222
 mysqld`_Z10do_commandP3THD+0x198
 mysqld`handle_one_connection+0x1a6
 libc.so.1`_thrp_setup+0x8d
 libc.so.1`_lwp_start
 5530

58

Full output

59

… as a Flame Graph

60

Linux example: perf Profiling
perf record -F 99 -ag -- sleep 30
[perf record: Woken up 9 times to write data]
[perf record: Captured and wrote 2.745 MB perf.data (~119930 samples)]
perf report -n -stdio
[…]
Overhead Samples Command Shared Object Symbol
........
#
 20.42% 605 bash [kernel.kallsyms] [k] xen_hypercall_xen_version
 |
 --- xen_hypercall_xen_version
 check_events
 |
 |--44.13%-- syscall_trace_enter
 | tracesys
 | |
 | |--35.58%-- __GI___libc_fcntl
 | | |
 | | |--65.26%-- do_redirection_internal
 | | | do_redirections
 | | | execute_builtin_or_function
 | | | execute_simple_command
[… ~13,000 lines truncated …]

call tree
summary

61

Full perf Output

62

… as a Flame Graph

63

Inspiration

more flamegraph.pl
[…]
This was inspired by Neelakanth Nadgir's excellent function_call_graph.rb
program, which visualized function entry and return trace events. As Neel
wrote: "The output displayed is inspired by Roch's CallStackAnalyzer which
was in turn inspired by the work on vftrace by Jan Boerhout". See:
https://blogs.oracle.com/realneel/entry/visualizing_callstacks_via_dtrace_and
[…]

Image source: https://blogs.oracle.com/realneel/entry/visualizing_callstacks_via_dtrace_and

Neelakanth Nadgir’s function_call_graph.rb (2007):
● It was inspired by Roch Bourbonnais’s CallStackAnalyzer,

which was inspired by Jan Boerhout’s vftrace.
● The x-axis is time, and it shows a complete function trace.
● Flame graphs are different: The x-axis is the population,

and they can show function traces or stack samples.

64

Flame Graph Summary
Visualizes a collection of stack traces

– x-axis: population: e.g., alphabetical sort to maximize merging
– y-axis: stack depth
– color: random (default) or a dimension

Original implementation: Perl + SVG + JavaScript
– https://github.com/brendangregg/FlameGraph
– Takes input from many different profilers

References:
– http://www.brendangregg.com/flamegraphs.html
– http://queue.acm.org/detail.cfm?id=2927301
– "The Flame Graph" CACM, June 2016

65

Flame Graph Interpretation

a()

b()

c()

e() f()

g()

d()

h()

i()

66

Flame Graph Interpretation (1/4)
Top edge shows who is running on-CPU,
and how much (width)

a()

b()

c()

e() f()

g()

d()

h()

i()

67

Flame Graph Interpretation (2/4)
Top-down shows ancestry
e.g., from g():

a()

b()

c()

e() f()

g()

d()

h()

i()

68

Flame Graph Interpretation (3/4)
Widths are proportional to presence in samples
e.g., comparing b() to h() (incl. children)

a()

b()

c()

e() f()

g()

d()

h()

i()

69

Flame Graph Interpretation (4/4)
Colors randomized to
differentiate frames
Or used for code type;
e.g.:
 green == JIT (e.g., Java)
 aqua == inlined
 red == user-level
 orange == kernel
 yellow == C++
 magenta == search term

Java JVM
(C++)

Kernel

C

70

CPU Flame Graph Tips & Tricks
A) Check sample count (bottom frame): idle system?

– E.g., 49 Hertz x 30 sec x 16 CPUs == 23,520 samples at 100% CPU utilization.
<500 samples total would mean <2% busy and probably not interesting!

B) Off-CPU time (I/O, locks) not present
– But their initialization/spin breadcrumbs may be present
– Can use off-CPU flame graphs for this (covered later)

C) Some tiny CPU code paths may be missing
– E.g., some kernel code paths that disable interrupts, and hypervisor time from the guest.
– This is a detail of the profiler and target. Flame graphs just show what the profiler sees.
– Flame graphs may drop tiny frames that are <1 pixel wide unless zoomed in, just to speed up rendering.

D) Too much "hair"? Try a leaf merge…
– Merge stack frames from leaf to root. The default is root to leaf.

71

Icicle Graph with Leaf Merge

Reveals common functions
called from many locations

"hair"

flamegraph.pl --inverted --reverse

72

Flame Graph Interactivity
Essentials:

– Mouse-over for frame info (tool tips, status bar)
– Click to zoom
– Search (Ctrl-F or button)

Nice to have:
– Merge control: root, leaf, middle
– Y-axis direction: flame or icicle
– Flame chart toggle
– Canned searches
– Collapse filters
– Code links

search
button

search matches in magenta

73

My original flamegraph.pl has --inverted for an “icicle graph”

Which way up?

Either way is fine!
● Icicle layout helps avoid scrolling

when starting at the top
● Let the end-user choose

st
ac

k
de

pt
h

st
ac

k
de

pt
h

Source: https://learn.microsoft.com/en-us/visualstudio/profiling/flame-graph

74

Differential Flame Graphs
Hues:

– red == more samples
– blue == less samples

Intensity:
– Degree of difference

Other examples
– flamegraphdiff

This spectrum can show other metrics, like CPI.

Remember to show elided frames!

Differential

more less

75

Poor Man’s Differential Flame Graphs
Toggle between tabs in
your browser

- Like searching for Pluto!

Or flip between slides
- Cue exciting demo!

1

76

Poor Man’s Differential Flame Graphs
2Toggle between tabs in

your browser
- Like searching for Pluto!

Or flip between slides
- Cue exciting demo!

77

System CPU Profilers
• Linux

– perf_events (aka "perf")
– bcc profile (eBPF-based)

• Windows
– XPerf, WPA (now has flame graphs!)

• OS X
– Instruments

• And many others…

Tip: use system profilers
whenever possible. Runtime
profilers (e.g., Java JVMTI-based)
are user space and typically
don't include kernel CPU time or
kernel stacks.

78

Linux CPU Flame Graphs
Linux 5.8+ via perf for simplicity (2020):

– Generates flamegraph.html. One command! Thanks Andreas Gerstmayr.

Linux 4.9+ via eBPF for efficiency (2016):

– eBPF (no longer an acronym) is the name of an in-kernel execution environment, used in this
case for aggregating stack samples in kernel context

– Most efficient: no perf.data file, summarizes in-kernel

perf script flamegraph -F 49 -a -- sleep 30

apt-get install bpfcc-tools
git clone https://github.com/brendangregg/FlameGraph
profile-bcc.py -dF 49 30 | ./FlameGraph/flamegraph.pl > perf.svg

Some runtimes (e.g., JVM) require extra steps for stacks & symbols (next section)

79

Older Linux CPU Flame Graphs
Linux 2.6+ via perf.data and perf script (2009):

Linux 4.5 can use folded output (2016):
– Skips the CPU-costly stackcollapse-perf.pl step; see:

http://www.brendangregg.com/blog/2016-04-30/linux-perf-folded.html

git clone https://github.com/brendangregg/FlameGraph; cd FlameGraph
perf record -F 49 -a –g -- sleep 30
perf script | ./stackcollapse-perf.pl |./flamegraph.pl > perf.svg

80

perf record

perf script

capture stacks

write text

stackcollapse-perf.pl

flamegraph.pl

perf.data

write samples

reads samples

folded output

perf record

perf report –g
folded

capture stacks

folded report

awk

flamegraph.pl

perf.data

write samples

reads samples

folded output

Linux 4.5
count stacks (BPF)

folded
output

flamegraph.pl

profile.py

Linux 4.9

Linux Profiling Optimizations
Linux 2.6

81

GUI Automation
There are many options nowadays. I’ve worked on five:

– Netflix Vector (now retired!):

– Netflix FlameScope (covered later)
– Netflix FlameCommander (continuous profiling; not open source yet)
– I’m now helping with Intel vTune and Intel gProfiler

Open source examples include Granulate gProfiler, Eclipse TraceCompass, Grafana flame graphs, Firefox
profiler, and more (see implementation slides). Build your own!

82

Inspired by flame graphs: https://bugs.webkit.org/show_bug.cgi?id=111162

Flame Charts (2013)

83

Chrome DevTools Flame Charts (2022)

84

flame graph flame chart

Firefox Profiler Flame Graph (2022)

85

Flame Charts
x-axis: time

Flame Graphs
x-axis: population
alphabet sort or another frame merging algorithm

3. STACKS AND SYMBOLS
And Other Issues

87

Broken Stack Traces are Common

perf record –F 99 –a –g – sleep 30
perf script
[…]
java 4579 cpu-clock:
 7f417908c10b [unknown] (/tmp/perf-4458.map)

java 4579 cpu-clock:
 7f41792fc65f [unknown] (/tmp/perf-4458.map)
 a2d53351ff7da603 [unknown] ([unknown])
[…]

should probably have more frames

88

… as a Flame Graph

broken java stacks
“grass”

89

Fixing Stack Walking
A. Frame pointer-based

– Fix by disabling that compiler optimization: gcc's -fno-omit-frame-pointer
– Pros: simple, supported by many tools
– Cons: might cost a little extra CPU (usually <1%)

B. Debug info (DWARF) walking
– Cons: costs disk space, and not supported by all profilers, expensive for real-time tracing

C. JIT-provided runtime walkers
– Pros: include more internals, such as inlined frames (e.g., JVMTI stacks)
– Cons: limited to application internals: no kernel

D. Last branch record (LBR)
E. Add-on walkers (eBPF)

90

Fixing Java Stack Traces
perf script
[…]
java 8131 cpu-clock:
 7fff76f2dce1 [unknown] ([vdso])
 7fd3173f7a93 os::javaTimeMillis() (/usr/lib/jvm…
 7fd301861e46 [unknown] (/tmp/perf-8131.map)
 7fd30184def8 [unknown] (/tmp/perf-8131.map)
 7fd30174f544 [unknown] (/tmp/perf-8131.map)
 7fd30175d3a8 [unknown] (/tmp/perf-8131.map)
 7fd30166d51c [unknown] (/tmp/perf-8131.map)
 7fd301750f34 [unknown] (/tmp/perf-8131.map)
 7fd3016c2280 [unknown] (/tmp/perf-8131.map)
 7fd301b02ec0 [unknown] (/tmp/perf-8131.map)
 7fd3016f9888 [unknown] (/tmp/perf-8131.map)
 7fd3016ece04 [unknown] (/tmp/perf-8131.map)
 7fd30177783c [unknown] (/tmp/perf-8131.map)
 7fd301600aa8 [unknown] (/tmp/perf-8131.map)
 7fd301a4484c [unknown] (/tmp/perf-8131.map)
 7fd3010072e0 [unknown] (/tmp/perf-8131.map)
 7fd301007325 [unknown] (/tmp/perf-8131.map)
 7fd301007325 [unknown] (/tmp/perf-8131.map)
 7fd3010004e7 [unknown] (/tmp/perf-8131.map)
 7fd3171df76a JavaCalls::call_helper(JavaValue*,…
 7fd3171dce44 JavaCalls::call_virtual(JavaValue*…
 7fd3171dd43a JavaCalls::call_virtual(JavaValue*…
 7fd31721b6ce thread_entry(JavaThread*, Thread*)…
 7fd3175389e0 JavaThread::thread_main_inner() (/…
 7fd317538cb2 JavaThread::run() (/usr/lib/jvm/nf…
 7fd3173f6f52 java_start(Thread*) (/usr/lib/jvm/…
 7fd317a7e182 start_thread (/lib/x86_64-linux-gn…

perf script
[…]
java 4579 cpu-clock:
 7f417908c10b [unknown] (/tmp/…

java 4579 cpu-clock:
 7f41792fc65f [unknown] (/tmp/…
 a2d53351ff7da603 [unknown] ([unkn…
[…]

I prototyped JVM frame pointers. Oracle
rewrote it and included it in Java as
-XX:+PreserveFramePointer
(JDK 8 u60b19)

91

Fixed Stacks Flame Graph

Java stacks
(but no symbols, yet)

92

Fixing Native Symbols
A. Add a -dbgsym package, if available
B. Recompile from source

93

Fixing JIT Symbols (Java, Node.js, …)
Just-in-time runtimes don't have a pre-compiled symbol table
So Linux perf looks for an externally provided symbol file

– This can be created by runtimes; e.g., Java's perf-map-agent
– Not the only solution; can also integrate with JIT-based walkers, or have an external symbol

translator (perf script, or eBPF-based).

perf script
Failed to open /tmp/perf-8131.map, continuing without symbols
[…]
java 8131 cpu-clock:
 7fff76f2dce1 [unknown] ([vdso])
 7fd3173f7a93 os::javaTimeMillis() (/usr/lib/jvm…
 7fd301861e46 [unknown] (/tmp/perf-8131.map)
[…]

94

Fixed Symbols (zoom)

95

Java Profilers System Profilers

2014: Java Profiling (broken stacks)

96

Java

JVM

Kernel

GC

2018: Java Profiling (fixed stacks)

CPU Mixed-mode Flame Graph

97

Mixed-Mode Case Study

Exception handling consuming CPU

98

Other Issues
• JIT Symbol churn

– Take before and after snapshots, or use perf’s timestamped symbol logs.

• Containers
– Are symbol files read from the right namespace? Should now work.

• Stack Depth limits
– Linux perf had a 127 frame limit, now tunable. Thanks Arnaldo Carvalho de Melo!

A Java microservice
with a stack depth

of > 900broken stacks

perf_event_max_stack=1024

99

Inlining
• Many frames may be missing (inlined)

– Flame graph may still make enough sense

• Inlining can often be be tuned
– e.g. Java's -XX:-Inline to disable, but can be 80% slower
– Java's -XX:MaxInlineSize and -XX:InlineSmallCode can be tuned

a little to reveal more frames: can even improve performance!

• Runtimes can un-inline on demand
– So that exception stack traces make sense
– e.g. Java's perf-map-agent can un-inline (unfoldall option)

100

Language/Runtime Issues
Each may have special stack/symbol instructions

– Java, Node.js, Python, Ruby, C++, Go, …
– See: https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
– Check if flame graphs are already in the “official” profiler
– Try an Internet search

https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

4. ADVANCED FLAME GRAPHS

102

Flame graphs can visualize any stack trace collection

On Linux, stacks from any of
these events:

103

Page Faults
Show what triggered main memory (resident) to grow:

– "fault" as (physical) main memory is allocated on-demand, when a virtual page is first populated
– Low overhead tool to solve some types of memory leak

perf record -e page-faults -p PID -g -- sleep 120

RES column in top(1) grows
because

104

Other Memory Sources

http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html

105

Disk I/O Requests
Shows who issued disk I/O (sync reads & writes):
perf record -e block:block_rq_insert -a -g -- sleep 60

GC? This JVM has swapped out!

106

Context Switches
Show why Java blocked and stopped running on-CPU:

– Identifies locks, I/O, sleeps
– If code path shouldn't block and looks random, it's an involuntary context switch. I often filter these, but I’ve

usually already solved this type of issue (CPU load) long before trying advanced flame graphs.

E.g., analyzing framework differences:

vs

rxNetty Tomcat

futexsys_poll
epoll futex

107

TCP Events
TCP transmit, using eBPF:

– For eBPF, can cost noticeable overhead for high packet rates (test and measure)
– For perf, can have prohibitive overhead due to the trace, dump, post-process cycle
– Note that TCP receive is async, so stack traces are meaningless. Trace socket read instead.

Can also trace TCP connect, accept
– Lower frequency, therefore lower overhead

bpftrace -e 'kprobe:tcp_sendmsg { @[kstack, ustack] = count(); }'

TCP sends

108

CPU Cache Misses
In this example, sampling via Last Level Cache loads:

– -c is the count (samples once per count)
– Can also sample hits, misses, stalls

Needs PEBS for IP accuracy
– Precise Event Based Sampling for Instruction Pointer

accuracy. Not yet enabled in AWS EC2 VMs.

perf record -e LLC-loads -c 10000 -a -g -- sleep 5; jmaps
perf script -f comm,pid,tid,cpu,time,event,ip,sym,dso > out.stacks

109

CPI Flame Graph
Cycles Per Instruction (CPI)

– red == instruction heavy
– blue == cycle heavy

(likely memory stall cycles)

zoomed:

110

Off-CPU Analysis

Off-CPU analysis is the study of blocking states,
or the code-path (stack trace) that led to them

111

Off-CPU Time Flame Graph

More info http://www.brendangregg.com/blog/2016-02-01/linux-wakeup-offwake-profiling.html

Off-CPU time

112

Off-CPU Time (zoomed): tar(1)

file read
from disk

directory read
from disk

Only showing kernel stacks in this example

pipe write
path read from disk

fstat from disk

113

CPU + Off-CPU Flame Graphs: See Everything

CPU

Off-CPU
Everything

(All thread time)

114

Off-Wake Time Flame Graph

Uses Linux enhanced BPF to merge off-CPU and waker stack in kernel context

Waker stack(s)

Blocked stack

Wokeup

115

Chain Graphs

Walking the chain of wakeup stacks to reach root cause

Waker stack(s)

116

FlameScope
Flame graphs can hide time-based issues of variation and perturbations.
FlameScope uses subsecond-offeset heat maps to show these issues.
They can then be selected for the corresponding flame graph.

https://brendangregg.com/blog/2018-12-15/flamescope-origin.html
https://www.brendangregg.com/HeatMaps/subsecondoffset.html

117

FlameScope Example

https://www.brendangregg.com/blog/2018-11-08/flamescope-pattern-recognition.html

How many patterns can you see?

118

2. CPU Flame graphs

3. Stacks & Symbols 4. Advanced flame graphs

1. Implementations

Agenda Recap

119

1. Interpret CPU flame graphs

2. Understand runtime challenges

3. Why eBPF for advanced flame graphs

A new tool to lower your cost, latency, and carbon

Take Aways

120

Links & References
Flame Graphs

– "The Flame Graph" Communications of the ACM, Vol. 56, No. 6 (June 2016)
– http://queue.acm.org/detail.cfm?id=2927301
– http://www.brendangregg.com/flamegraphs.html
– http://www.brendangregg.com/flamegraphs.html#Updates
– http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
– http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html
– http://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html
– http://techblog.netflix.com/2015/07/java-in-flames.html
– http://techblog.netflix.com/2016/04/saving-13-million-computational-minutes.html
– http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html
– http://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html
– http://www.brendangregg.com/blog/2016-02-01/linux-wakeup-offwake-profiling.html
– http://www.brendangregg.com/blog/2016-02-05/ebpf-chaingraph-prototype.html
– https://brendangregg.com/blog/2018-12-15/flamescope-origin.html
– https://github.com/brendangregg/FlameGraph
– https://github.com/spiermar/d3-flame-graph
– https://github.com/Netflix/flamescope
– http://corpaul.github.io/flamegraphdiff/
– https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/user-interface-reference/window-fla

me-graph.html
– https://gprofiler.io/

Linux perf
– https://perf.wiki.kernel.org/index.php/Main_Page
– http://www.brendangregg.com/perf.html

Linux eBPF
– https://ebpf.io/ https://www.brendangregg.com/ebpf.html

These slides: https://www.brendangregg.com/Slides/YOW2022_flame_graphs.pdf

http://queue.acm.org/detail.cfm?id=2927301
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/flamegraphs.html%23Updates
http://www.brendangregg.com/flamegraphs.html%23Updates
http://www.brendangregg.com/flamegraphs.html%23Updates
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html
http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html
http://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html
http://techblog.netflix.com/2015/07/java-in-flames.html
http://techblog.netflix.com/2015/07/java-in-flames.html
http://techblog.netflix.com/2015/07/java-in-flames.html
http://techblog.netflix.com/2016/04/saving-13-million-computational-minutes.html
http://techblog.netflix.com/2016/04/saving-13-million-computational-minutes.html
http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html
http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html
http://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html
http://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html
http://www.brendangregg.com/blog/2016-02-01/linux-wakeup-offwake-profiling.html
http://www.brendangregg.com/blog/2016-02-01/linux-wakeup-offwake-profiling.html
http://www.brendangregg.com/blog/2016-02-05/ebpf-chaingraph-prototype.html
http://www.brendangregg.com/blog/2016-02-05/ebpf-chaingraph-prototype.html
http://corpaul.github.io/flamegraphdiff/
http://corpaul.github.io/flamegraphdiff/
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/user-interface-reference/window-flame-graph.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/user-interface-reference/window-flame-graph.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/perf.html

Thank you!

http://www.brendangregg.com

brendan@intel.com

@brendangregg

Questions?

YOW! 2022

BONUS SLIDES

123

More Implementations

These are in addition to the earlier examples.

(Note: This is not an an endorsement of any company/product or sponsored by anyone.)

124

Java: SPF4J (2012)

Source: http://zolyfarkas.github.io/spf4j/#

125

OSX: Instruments (2012; converter)

Source: https://schani.wordpress.com/2012/11/16/flame-graphs-for-instruments/

126

Ruby: mini-profiler (2013)

Source: https://samsaffron.com/archive/2013/03/19/flame-graphs-in-ruby-miniprofiler

127

Julia: ProfileView.jl (2013)

Source: https://github.com/timholy/ProfileView.jl (Tim Holy)

128

Windows: Xperf (2013; converter)

Source: https://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/
(Bruce Dawson)

129

Perl: NYTProf (2013)

Source: https://blog.timbunce.org/2013/04/08/nytprof-v5-flaming-precision/ (Tim Bunce)

130

Erlang: Eflame (2013)

Source: https://github.com/proger/eflame (Volodymyr Ky)

131

Ruby: ruby-prof-flamegraph (2014)

Source: https://github.com/oozou/ruby-prof-flamegraph

132

Node.js: flamegraph (2015)

Source: https://github.com/thlorenz/flamegraph (Thorsten Lorenz)

133

Haskell: ghc-prof-flamegraph (2015)

Source: https://www.fpcomplete.com/blog/2015/04/ghc-prof-flamegraph/ (Francesco Mazzoli)

134

Differentials: Flamegraphdiff (2015)

Source: http://corpaul.github.io/flamegraphdiff/ (Cor-Paul Bezemer)

135

Java: jfr-flame-graph (2015)

Source: http://isuru-perera.blogspot.com/2015/05/flame-graphs-with-java-flight-recordings.html
(M. Isuru Tharanga Chrishantha Perera)

136

Clojure: Flames (2015)

Source: https://github.com/jstepien/flames/ (Jan Stępień)

137

Python: python-flamegraph (2015)

Source: https://github.com/evanhempel/python-flamegraph (Evan Hempel)

138

Strongloop: Arc (2015)

Source: https://es.slideshare.net/jguerrero999/nodejs-transaction-tracing-root-cause-analysis-with-
strongloop-arc

139

Java: perfj (2015)

Source: https://github.com/coderplay/perfj (Min Zhou)

140

Golang: Uber go-torch (2015)

Source: https://github.com/uber-archive/go-torch

141

Intel: processor trace converter (2015)

Source: http://halobates.de/blog/p/329 (Andi Kleen)

142

Nylas: perftools (2015)

Source: https://www.nylas.com/blog/performance/ (code by Eben Freeman)

143

Django: djdt-flamegraph (2015)

Source: https://github.com/blopker/djdt-flamegraph (Bo Lopker)

144

NodeSource: Nsolid (Node.js; 2015)

Source: https://nodesource.com/blog/understanding-cpu-flame-graphs

145

D3: d3-flame-graphs (2015)

Source: https://cimi.io/d3-flame-graphs/ (Alex Ciminian)

146

Golang: Goprofui (2015)

Source: https://github.com/wirelessregistry/goprofui (Srdjan Marinovic, Julia Allyce)

147

Rust: flame (2016)

Source: https://github.com/llogiq/flame (Ty Overby)

148

Dell Cloud Manager: Gumshoe Load Investigator (2016)

Source: https://github.com/worstcase/gumshoe (Jonathan Newbrough)

"This haystack is looking more like a needle every minute" -- source: https://youtu.be/GGJFZfwXJ44?t=225

149

Uber: pyflame (Python; 2016)

Source: https://www.uber.com/en-AU/blog/pyflame-python-profiler/

150

Android: erlang-atrace-flamegraphs (2017)

Source: https://blog.rhye.org/post/android-profiling-flamegraphs/ (Ross Schlaikjer)

151

Java: grav (heap allocations; 2017)

Source: https://epickrram.blogspot.com/2017/09/heap-allocation-flamegraphs.html (Mark Price)

152

Nudge: APM (for Java; 2017)

Source: https://nudge-apm.com/features/#profiling

153

Java: clj-async-profiler (2017)

Source: http://clojure-goes-fast.com/blog/profiling-tool-async-profiler/ (Alexander Yakushev)

154

.NET: codetrack (2017)

Source: https://www.getcodetrack.com/

155

Node.js: Flamebearer (2018)

Source: https://github.com/mapbox/flamebearer (Volodymyr Agafonkin)

156

Opsian: always-on flame graphs (2018)

Source: https://www.opsian.com/blog/always-on-production-flame-graphs/

157

Speedscope: left heavy view (2018)

Source: https://jamie-wong.com/post/speedscope/ (Jamie Wong)

158

AppDynamics: flame graph (2018; now Cisco)

Source: https://docs.appdynamics.com/appd/20.x/en/application-monitoring/troubleshooting-applications/
event-loop-blocking-in-node-js#EventLoopBlockinginNode.js-FlameGraph

159

Inferno: flame graph (Rust port; 2019)

Source: https://github.com/jonhoo/inferno (Jon Gjengset)

160

SAP: HANA Dump Analyzer (2019)

Source: https://blogs.sap.com/2019/04/22/visualizing-olap-requests-on-sap-hana-system-with-concurrency-
flame-graph-using-sap-hana-dump-analyzer/

161

Backtrace: flame graph (2019)

Source: https://support.backtrace.io/hc/en-us/articles/360040515971-Flame-graphs

162

Instana: flame graph (2020; now IBM)

Source: https://www.ibm.com/docs/en/instana-observability/current?topic=processes-analyzing-profiles

163

ej-technologies: JProfiler Flame Graph (for Java; 2020)

Source: https://www.ej-technologies.com/resources/jprofiler/help/doc/main/cpu.html

164

Samsung: QA-Board (2020)

Source: https://samsung.github.io/qaboard/blog/2020/06/24/flame-graphs

165

Microsoft Visual Studio: vscode-js-profile-flame (for JavaScript; 2020)

Source: https://marketplace.visualstudio.com/items?itemName=ms-vscode.vscode-js-profile-flame

Left Heavy view

166

Pyroscope: flame graph (2020)

Source: https://pyroscope.io/blog/what-is-a-flamegraph/

167

Uber: pprof++ (2021; for Golang)

Source: https://www.uber.com/en-AU/blog/pprof-go-profiler/ (Pengfei Su)

168

Lightstep: flame graph (2021)

Source: https://www.instana.com/blog/instana-announces-the-industrys-first-commercial-continuous-
production-profiler/

169

Dynatrace: allocation flame graph (2021)

Source: https://www.dynatrace.com/support/help/how-to-use-dynatrace/diagnostics/memory-profiling

170

Pixie Labs: pod performance flamegraph (2021)

Source: https://docs.pixielabs.ai/tutorials/pixie-101/profiler/

171

Apache Flink: flame graphs (2021)

off-CPU

Source: https://nightlies.apache.org/flink/flink-docs-master/docs/ops/debugging/flame_graphs/

172

Embrace: Application-Not-Responding flame graph (2021)

Source: https://blog.embrace.io/solve-anrs-with-flame-graphs/

173

Polar Signals: parca Continuous Profiling (2021)

Source: https://www.polarsignals.com/blog/posts/2022/08/30/optimizing-with-continuous-profiling/

174

Dockyard: Flame On (for Elixir apps; 2022)

Source: https://dockyard.com/blog/2022/02/22/profiling-elixir-applications-with-flame-graphs-and-flame-on
(Mike Binns)

175

OpenResty: Xray (2022)

Source: https://openresty.com/en/xray (Yichun Zhang)

176

Elastic: universal profiling (2022)

Source: https://www.elastic.co/observability/universal-profiling

177

… and more

Thanks for all the open source contributions!

(Dec 2022)

	Slide 1
	Slide 2
	Slide 3
	Visualize CPU time consumed by all software
	Agenda
	Take aways
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	CPU PROFILING
	Stack Traces
	CPU Profiling
	Flame Graph Interpretation
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	perf Profiling
	Full perf report Output
	… as a Flame Graph
	Slide 63
	Flame Graph Summary
	Slide 65
	Flame Graph Interpretation (1/3)
	Flame Graph Interpretation (2/3)
	Flame Graph Interpretation (3/3)
	Slide 69
	Slide 70
	Icicle Graph
	Slide 72
	Slide 73
	Differential Flame Graphs
	Slide 75
	Slide 76
	System Profilers
	Slide 78
	Slide 79
	Linux Profiling Optimizations
	GUI Automation
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Stack Tracing
	Slide 87
	… as a Flame Graph (2)
	Fixing Stack Walking
	Fixing Java Stack Traces
	Fixed Stacks Flame Graph
	Fixing Native Symbols
	Fixing JIT Symbols (Java, Node.js, …)
	Stacks & Symbols (zoom)
	Slide 95
	Slide 96
	Case Study
	Slide 98
	Inlining
	Language/Runtime Instructions
	Advanced Flame Graphs
	Flame graphs can be generated for stack traces from any Linux e
	Page Faults
	Other Memory Sources
	Disk I/O Requests
	Context Switches
	TCP Events
	CPU Cache Misses
	CPI Flame Graph
	Off-CPU Analysis
	Off-CPU Time Flame Graph
	Off-CPU Time (zoomed): tar(1)
	CPU + Off-CPU Flame Graphs: See Everything
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Links & References
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177

