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Statement from the heart

I’d like to begin by acknowledging the Traditional Owners of this land and pay my 
respects to Elders past and present.
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My Dream

To Completely Understand
the Performance of Everything
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Flame Graphs

A visualization of software 

Can also visualize CPU and 
other resource usage

Now a staple in performance 
engineering

Kernel

Java

User-level
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2. CPU Flame graphs

3. Stacks & Symbols 4. Advanced flame graphs

1. Implementations

Agenda
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1. Interpret CPU flame graphs

2. Understand runtime challenges

3. Why eBPF for advanced flame graphs

A new tool to lower your cost, latency, and carbon

Take Aways

Slides online: 
https://www.brendangregg.com/Slides/YOW2022_flame_graphs.pdf



1. IMPLEMENTATIONS
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Quick Tour of Some Examples

More examples in later “bonus slides” section.

(Note: This is not an an endorsement of any company/product or sponsored by anyone.)
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My original flamegraph.pl (2011; using Perl/SVG/JavaScript)

https://github.com/brendangregg/FlameGraph
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Martin Spier d3-flame-graph (my colleague at Netflix; 2015; D3)

Source: https://github.com/spiermar/d3-flame-graph  https://martinspier.io/
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Facebook: Strobelight (2014)

Source: https://tracingsummit.org/ts/2014/files/TracingSummit2014-Tracing-at-Facebook-Scale.pdf
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Node.js: 0x (2016)

Source: https://github.com/davidmarkclements/0x (David Mark Clements)
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Qt: Creator (2016) 

Source: https://www.qt.io/blog/2016/05/11/qt-creator-4-0-0-released
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Python: vprof (2016)

Source: https://github.com/nvdv/vprof (Nick Volynets)
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Microsoft: WPA / ETW (2016)

Source: https://learn.microsoft.com/en-us/windows-hardware/test/wpt/graphs#flame_graphs
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LinkedIn: ODP (2017)

Source: https://engineering.linkedin.com/blog/2017/01/odp--an-infrastructure-for-on-demand-service-
profiling
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Oracle: Developer Studio Performance Analyzer (2017)

Source: https://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/
o11-151-perf-analyzer-brief-1405338.pdf
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Windows: PerfView (2017)

Source: https://github.com/Microsoft/perfview/pull/440 (Adam Sitnik)
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Google: pprof (2017)

Source: https://github.com/google/pprof/pull/188 (Martin Spier)
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Linux: hotspot (2017)

Source: https://github.com/KDAB/hotspot (Milian Wolff)
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Eclipse Foundation: TraceCompass (2018)

Source: https://www.eclipse.org/tracecompass/index.html
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Java: Java Mission Control (2018)

Source: https://github.com/thegreystone/jmc-flame-view (Marcus Hirt)
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Netflix: FlameScope (2018)

Source: https://netflixtechblog.com/netflix-flamescope-a57ca19d47bb (Brendan Gregg, Martin Spier)
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Netflix: FlameCommander (2019)

Source: https://www.youtube.com/watch?v=L58GrWcrD00 (Martin Spier, Jason Koch, Susie Xia, Brendan Gregg)
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AMD: uProf (2019)

Source: https://developer.amd.com/amd-uprof/?sf215410082=1
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Java: YourKit (2019)

Source: https://www.yourkit.com/docs/java/help/cpu_flame_graph.jsp 
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Java: IntelliJ IDEA (2019)

Source: https://blog.jetbrains.com/idea/2019/06/intellij-idea-2019-2-eap-4-profiling-tools-structural-search-
preview-and-more/
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Firefox: Profiler (2019)

Source: https://profiler.firefox.com 
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Linux: perf script flamegraph (2020)

Source: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/
monitoring_and_managing_system_status_and_performance/getting-started-with-
flamegraphs_monitoring-and-managing-system-status-and-performance (Andreas Gerstmayr)
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MathWorks: MATLAB Profiler (2020)

Source: https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
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AWS: CodeGuru (2020)

Source: https://aws.amazon.com/codeguru/features/
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Google: Cloud Profiler (2020)

Source: https://cloud.google.com/profiler/docs/focusing-profiles
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Intel: vTune (2021)

Source: https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/
user-interface-reference/window-flame-graph.html
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Splunk: AlwaysOn Profiling flame graph (2021)

Source: https://docs.splunk.com/Observability/apm/profiling/using-the-flamegraph.html
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New Relic: flame graphs (2021)

Source: https://docs.newrelic.com/whats-new/2021/07/whats-new-july-8-realtime-profiling-java/
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DataDog: profiling flame graph (2021) 

Source: https://www.datadoghq.com/knowledge-center/distributed-tracing/flame-graph/
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Granulate: gprofiler (2022; now Intel)

Source: https://docs.gprofiler.io/about-gprofiler/gprofiler-features/views/flame-graph
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Microsoft Visual Studio: Flame Graph (2022)

Source: https://learn.microsoft.com/en-us/visualstudio/profiling/flame-graph
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GrafanaLabs: Grafana flame graph (2022)

Source: https://grafana.com/docs/grafana/next/panels-visualizations/visualizations/flame-graph
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Flame Graph Adoption

Implementations: >80
Related open source projects: >400
Commercial product adoptions: >30
New startups: 4 (so far)
Startup exits: 1 (so far)
Industry investment: >AUD$1B
End users: ? (a lot)



2. CPU PROFILING
An Introduction to Flame Graphs
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Stack Traces

A code path snapshot. e.g., from jstack(1):

$ jstack 1819

[…]

"main" prio=10 tid=0x00007ff304009000 
nid=0x7361 runnable [0x00007ff30d4f9000]

  java.lang.Thread.State: RUNNABLE

at Func_abc.func_c(Func_abc.java:6)

at Func_abc.func_b(Func_abc.java:16)

at Func_abc.func_a(Func_abc.java:23)

at Func_abc.main(Func_abc.java:27)

running
parent
g.parent
g.g.parent
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CPU Profiling
Record stacks at a timed interval 
• Pros: Low (deterministic) overhead
• Cons: Coarse accuracy, but usually sufficient

A
B

block                       interrupt

on-CPU off-CPU

A
B
A A

B
A

syscall

time

stack
samples: A
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Stack Samples
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Stack Samples
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Stack Samples
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Example Profile (“hair graph”) 
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Stack Samples: Merged
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Example Profile: Merged
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Alphabet Sort
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Alphabet Merged (“Flame Graph”)
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Example Profile: Flame Graph
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Example Profile: Flame Graph (with code hues)
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Replay 1/3: Time Columns 
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Replay 2/3: Time Merged (aka “Flame Chart”)
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Replay 3/3: Flame Graph
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Origin (2011): CPU Profiling
# dtrace -x ustackframes=100 -n 'profile-997 /execname == "mysqld"/ {
    @[ustack()] = count(); } tick-60s { exit(0); }'
[… over 500,000 lines truncated …]

              libc.so.1`__priocntlset+0xa
              libc.so.1`getparam+0x83
              libc.so.1`pthread_getschedparam+0x3c
              libc.so.1`pthread_setschedprio+0x1f
              mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x9ab
              mysqld`_Z10do_commandP3THD+0x198
              mysqld`handle_one_connection+0x1a6
              libc.so.1`_thrp_setup+0x8d
              libc.so.1`_lwp_start
             4884

              mysqld`_Z13add_to_statusP17system_status_varS0_+0x47
              mysqld`_Z22calc_sum_of_all_statusP17system_status_var+0x67
              mysqld`_Z16dispatch_command19enum_server_commandP3THDPcj+0x1222
              mysqld`_Z10do_commandP3THD+0x198
              mysqld`handle_one_connection+0x1a6
              libc.so.1`_thrp_setup+0x8d
              libc.so.1`_lwp_start
             5530
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Full output
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… as a Flame Graph
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Linux example: perf Profiling
# perf record -F 99 -ag -- sleep 30
[ perf record: Woken up 9 times to write data ]
[ perf record: Captured and wrote 2.745 MB perf.data (~119930 samples) ]
# perf report -n -stdio
[…]
# Overhead       Samples  Command      Shared Object                         Symbol
# ........  ............  .......  .................  .............................
#
    20.42%           605     bash  [kernel.kallsyms]  [k] xen_hypercall_xen_version      
               |
               --- xen_hypercall_xen_version
                   check_events
                  |          
                  |--44.13%-- syscall_trace_enter
                  |          tracesys
                  |          |          
                  |          |--35.58%-- __GI___libc_fcntl
                  |          |          |          
                  |          |          |--65.26%-- do_redirection_internal
                  |          |          |          do_redirections
                  |          |          |          execute_builtin_or_function
                  |          |          |          execute_simple_command
[… ~13,000 lines truncated …]

call tree
summary
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Full perf Output
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… as a Flame Graph



63

Inspiration

# more flamegraph.pl
[…]
# This was inspired by Neelakanth Nadgir's excellent function_call_graph.rb
# program, which visualized function entry and return trace events.  As Neel
# wrote: "The output displayed is inspired by Roch's CallStackAnalyzer which
# was in turn inspired by the work on vftrace by Jan Boerhout".  See:
# https://blogs.oracle.com/realneel/entry/visualizing_callstacks_via_dtrace_and
[…] 

Image source: https://blogs.oracle.com/realneel/entry/visualizing_callstacks_via_dtrace_and

Neelakanth Nadgir’s function_call_graph.rb (2007):
● It was inspired by Roch Bourbonnais’s CallStackAnalyzer,

which was inspired by Jan Boerhout’s vftrace.
● The x-axis is time, and it shows a complete function trace.
● Flame graphs are different: The x-axis is the population,

and they can show function traces or stack samples.
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Flame Graph Summary
Visualizes a collection of stack traces

– x-axis: population: e.g., alphabetical sort to maximize merging
– y-axis: stack depth
– color: random (default) or a dimension

Original implementation: Perl + SVG + JavaScript
– https://github.com/brendangregg/FlameGraph
– Takes input from many different profilers

References:
– http://www.brendangregg.com/flamegraphs.html 
– http://queue.acm.org/detail.cfm?id=2927301
– "The Flame Graph" CACM, June 2016
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Flame Graph Interpretation
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Flame Graph Interpretation (1/4)
Top edge shows who is running on-CPU,
and how much (width)
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Flame Graph Interpretation (2/4)
Top-down shows ancestry
e.g., from g():
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h()
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Flame Graph Interpretation (3/4)
Widths are proportional to presence in samples
e.g., comparing b() to h() (incl. children)
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e() f()

g()

d()

h()

i()
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Flame Graph Interpretation (4/4)
Colors randomized to 
differentiate frames
Or used for code type; 
e.g.:
    green == JIT (e.g., Java)
    aqua == inlined
    red == user-level
    orange == kernel
    yellow == C++
    magenta == search term

Java JVM
(C++)

Kernel

C
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CPU Flame Graph Tips & Tricks
A) Check sample count (bottom frame): idle system?

– E.g., 49 Hertz x 30 sec x 16 CPUs == 23,520 samples at 100% CPU utilization.
<500 samples total would mean <2% busy and probably not interesting!

B) Off-CPU time (I/O, locks) not present
– But their initialization/spin breadcrumbs may be present
– Can use off-CPU flame graphs for this (covered later)

C) Some tiny CPU code paths may be missing
– E.g., some kernel code paths that disable interrupts, and hypervisor time from the guest.
– This is a detail of the profiler and target. Flame graphs just show what the profiler sees.
– Flame graphs may drop tiny frames that are <1 pixel wide unless zoomed in, just to speed up rendering.

D) Too much "hair"? Try a leaf merge…
– Merge stack frames from leaf to root. The default is root to leaf.
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Icicle Graph with Leaf Merge

Reveals common functions 
called from many locations

"hair"

flamegraph.pl --inverted --reverse
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Flame Graph Interactivity
Essentials:

– Mouse-over for frame info (tool tips, status bar)
– Click to zoom
– Search (Ctrl-F or button)

Nice to have:
– Merge control: root, leaf, middle
– Y-axis direction: flame or icicle
– Flame chart toggle
– Canned searches
– Collapse filters
– Code links

search
button

search matches in magenta 
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My original flamegraph.pl has --inverted for an “icicle graph”

Which way up?

Either way is fine!
● Icicle layout helps avoid scrolling

when starting at the top
● Let the end-user choose

st
ac

k 
de

pt
h

st
ac

k 
de

pt
h

Source: https://learn.microsoft.com/en-us/visualstudio/profiling/flame-graph
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Differential Flame Graphs
Hues:

– red == more samples
– blue == less samples

Intensity:
– Degree of difference

Other examples
– flamegraphdiff

This spectrum can show other metrics, like CPI.

Remember to show elided frames!

Differential

more less
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Poor Man’s Differential Flame Graphs
Toggle between tabs in 
your browser

- Like searching for Pluto!

Or flip between slides
- Cue exciting demo!

1
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Poor Man’s Differential Flame Graphs
2Toggle between tabs in 

your browser
- Like searching for Pluto!

Or flip between slides
- Cue exciting demo!
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System CPU Profilers
• Linux

– perf_events (aka "perf")
– bcc profile (eBPF-based)

• Windows
– XPerf, WPA (now has flame graphs!)

• OS X
– Instruments

• And many others…

Tip: use system profilers 
whenever possible. Runtime 
profilers (e.g., Java JVMTI-based) 
are user space and typically 
don't include kernel CPU time or 
kernel stacks.



78

Linux CPU Flame Graphs
Linux 5.8+ via perf for simplicity (2020):

– Generates flamegraph.html. One command! Thanks Andreas Gerstmayr.

Linux 4.9+ via eBPF for efficiency (2016):

– eBPF (no longer an acronym) is the name of an in-kernel execution environment, used in this 
case for aggregating stack samples in kernel context

– Most efficient: no perf.data file, summarizes in-kernel

perf script flamegraph -F 49 -a -- sleep 30

apt-get install bpfcc-tools
git clone https://github.com/brendangregg/FlameGraph
profile-bcc.py -dF 49 30 | ./FlameGraph/flamegraph.pl > perf.svg

Some runtimes (e.g., JVM) require extra steps for stacks & symbols (next section)
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Older Linux CPU Flame Graphs
Linux 2.6+ via perf.data and perf script (2009):

Linux 4.5 can use folded output (2016):
– Skips the CPU-costly stackcollapse-perf.pl step; see:

http://www.brendangregg.com/blog/2016-04-30/linux-perf-folded.html

git clone https://github.com/brendangregg/FlameGraph; cd FlameGraph
perf record -F 49 -a –g -- sleep 30
perf script | ./stackcollapse-perf.pl |./flamegraph.pl > perf.svg
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perf record

perf script

capture stacks

write text

stackcollapse-perf.pl

flamegraph.pl

perf.data

write samples

reads samples

folded output

perf record

perf report –g 
folded

capture stacks

folded report

awk

flamegraph.pl

perf.data

write samples

reads samples

folded output

Linux 4.5
count stacks (BPF)

folded
output

flamegraph.pl

profile.py

Linux 4.9

Linux Profiling Optimizations
Linux 2.6
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GUI Automation
There are many options nowadays. I’ve worked on five:

– Netflix Vector (now retired!):

– Netflix FlameScope (covered later)
– Netflix FlameCommander (continuous profiling; not open source yet)
– I’m now helping with Intel vTune and Intel gProfiler

Open source examples include Granulate gProfiler, Eclipse TraceCompass, Grafana flame graphs, Firefox 
profiler, and more (see implementation slides). Build your own!
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Inspired by flame graphs: https://bugs.webkit.org/show_bug.cgi?id=111162

Flame Charts (2013)



83

Chrome DevTools Flame Charts (2022)
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flame graph       flame chart

Firefox Profiler Flame Graph (2022)
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Flame Charts
x-axis: time

Flame Graphs
x-axis: population
alphabet sort or another frame merging algorithm



3. STACKS AND SYMBOLS
And Other Issues
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Broken Stack Traces are Common

# perf record –F 99 –a –g – sleep 30
# perf script
[…]
java  4579 cpu-clock: 
      7f417908c10b [unknown] (/tmp/perf-4458.map)

java  4579 cpu-clock: 
      7f41792fc65f [unknown] (/tmp/perf-4458.map)
  a2d53351ff7da603 [unknown] ([unknown])
[…]

should probably have more frames
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… as a Flame Graph

broken java stacks
“grass”
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Fixing Stack Walking
A. Frame pointer-based

– Fix by disabling that compiler optimization: gcc's -fno-omit-frame-pointer
– Pros: simple, supported by many tools
– Cons: might cost a little extra CPU (usually <1%)

B. Debug info (DWARF) walking
– Cons: costs disk space, and not supported by all profilers, expensive for real-time tracing

C. JIT-provided runtime walkers
– Pros: include more internals, such as inlined frames (e.g., JVMTI stacks)
– Cons: limited to application internals: no kernel

D. Last branch record (LBR)
E. Add-on walkers (eBPF)
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Fixing Java Stack Traces
# perf script
[…]
java 8131 cpu-clock: 
    7fff76f2dce1 [unknown] ([vdso])
    7fd3173f7a93 os::javaTimeMillis() (/usr/lib/jvm…
    7fd301861e46 [unknown] (/tmp/perf-8131.map)
    7fd30184def8 [unknown] (/tmp/perf-8131.map)
    7fd30174f544 [unknown] (/tmp/perf-8131.map)
    7fd30175d3a8 [unknown] (/tmp/perf-8131.map)
    7fd30166d51c [unknown] (/tmp/perf-8131.map)
    7fd301750f34 [unknown] (/tmp/perf-8131.map)
    7fd3016c2280 [unknown] (/tmp/perf-8131.map)
    7fd301b02ec0 [unknown] (/tmp/perf-8131.map)
    7fd3016f9888 [unknown] (/tmp/perf-8131.map)
    7fd3016ece04 [unknown] (/tmp/perf-8131.map)
    7fd30177783c [unknown] (/tmp/perf-8131.map)
    7fd301600aa8 [unknown] (/tmp/perf-8131.map)
    7fd301a4484c [unknown] (/tmp/perf-8131.map)
    7fd3010072e0 [unknown] (/tmp/perf-8131.map)
    7fd301007325 [unknown] (/tmp/perf-8131.map)
    7fd301007325 [unknown] (/tmp/perf-8131.map)
    7fd3010004e7 [unknown] (/tmp/perf-8131.map)
    7fd3171df76a JavaCalls::call_helper(JavaValue*,…
    7fd3171dce44 JavaCalls::call_virtual(JavaValue*…
    7fd3171dd43a JavaCalls::call_virtual(JavaValue*…
    7fd31721b6ce thread_entry(JavaThread*, Thread*)…
    7fd3175389e0 JavaThread::thread_main_inner() (/…
    7fd317538cb2 JavaThread::run() (/usr/lib/jvm/nf…
    7fd3173f6f52 java_start(Thread*) (/usr/lib/jvm/…
    7fd317a7e182 start_thread (/lib/x86_64-linux-gn…

# perf script
[…]
java  4579 cpu-clock: 
      7f417908c10b [unknown] (/tmp/…

java  4579 cpu-clock: 
      7f41792fc65f [unknown] (/tmp/…
  a2d53351ff7da603 [unknown] ([unkn…
[…]

I prototyped JVM frame pointers. Oracle 
rewrote it and included it in Java as
-XX:+PreserveFramePointer
(JDK 8 u60b19)
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Fixed Stacks Flame Graph

Java stacks
(but no symbols, yet)
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Fixing Native Symbols
A. Add a -dbgsym package, if available
B. Recompile from source
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Fixing JIT Symbols (Java, Node.js, …)
Just-in-time runtimes don't have a pre-compiled symbol table
So Linux perf looks for an externally provided symbol file

– This can be created by runtimes; e.g., Java's perf-map-agent
– Not the only solution; can also integrate with JIT-based walkers, or have an external symbol 

translator (perf script, or eBPF-based).

# perf script
Failed to open /tmp/perf-8131.map, continuing without symbols
[…]
java 8131 cpu-clock: 
    7fff76f2dce1 [unknown] ([vdso])
    7fd3173f7a93 os::javaTimeMillis() (/usr/lib/jvm…
    7fd301861e46 [unknown] (/tmp/perf-8131.map)
[…]
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Fixed Symbols (zoom)
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Java Profilers System Profilers

2014: Java Profiling (broken stacks)
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Java

JVM

Kernel

GC

2018: Java Profiling (fixed stacks)

CPU Mixed-mode Flame Graph
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Mixed-Mode Case Study

Exception handling consuming CPU
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Other Issues
• JIT Symbol churn

– Take before and after snapshots, or use perf’s timestamped symbol logs.

• Containers
– Are symbol files read from the right namespace? Should now work.

• Stack Depth limits
– Linux perf had a 127 frame limit, now tunable. Thanks Arnaldo Carvalho de Melo!

A Java microservice
with a stack depth

of > 900broken stacks

perf_event_max_stack=1024
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Inlining
• Many frames may be missing (inlined)

– Flame graph may still make enough sense

• Inlining can often be be tuned
– e.g. Java's -XX:-Inline to disable, but can be 80% slower
– Java's -XX:MaxInlineSize and -XX:InlineSmallCode can be tuned

a little to reveal more frames: can even improve performance!

• Runtimes can un-inline on demand
– So that exception stack traces make sense
– e.g. Java's perf-map-agent can un-inline (unfoldall option)
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Language/Runtime Issues
Each may have special stack/symbol instructions

– Java, Node.js, Python, Ruby, C++, Go, …
– See: https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html 
– Check if flame graphs are already in the “official” profiler
– Try an Internet search

https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html


4. ADVANCED FLAME GRAPHS
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Flame graphs can visualize any stack trace collection

On Linux, stacks from any of 
these events:
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Page Faults
Show what triggered main memory (resident) to grow:

– "fault" as (physical) main memory is allocated on-demand, when a virtual page is first populated
– Low overhead tool to solve some types of memory leak

# perf record -e page-faults -p PID -g -- sleep 120

RES column in top(1) grows
because
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Other Memory Sources

http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html
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Disk I/O Requests
Shows who issued disk I/O (sync reads & writes):
# perf record -e block:block_rq_insert -a -g -- sleep 60

GC? This JVM has swapped out!
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Context Switches
Show why Java blocked and stopped running on-CPU:

– Identifies locks, I/O, sleeps
– If code path shouldn't block and looks random, it's an involuntary context switch. I often filter these, but I’ve 

usually already solved this type of issue (CPU load) long before trying advanced flame graphs.

E.g., analyzing framework differences:

vs

rxNetty Tomcat

futexsys_poll
epoll futex
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TCP Events
TCP transmit, using eBPF:

– For eBPF, can cost noticeable overhead for high packet rates (test and measure)
– For perf, can have prohibitive overhead due to the trace, dump, post-process cycle
– Note that TCP receive is async, so stack traces are meaningless. Trace socket read instead.

Can also trace TCP connect, accept
– Lower frequency, therefore lower overhead

# bpftrace -e 'kprobe:tcp_sendmsg { @[kstack, ustack] = count(); }'

TCP sends
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CPU Cache Misses
In this example, sampling via Last Level Cache loads:

– -c is the count (samples once per count)
– Can also sample hits, misses, stalls

Needs PEBS for IP accuracy
– Precise Event Based Sampling for Instruction Pointer

accuracy. Not yet enabled in AWS EC2 VMs.

# perf record -e LLC-loads -c 10000 -a -g -- sleep 5; jmaps
# perf script -f comm,pid,tid,cpu,time,event,ip,sym,dso > out.stacks



109

CPI Flame Graph
Cycles Per Instruction (CPI)

– red == instruction heavy
– blue == cycle heavy

(likely memory stall cycles)

zoomed:
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Off-CPU Analysis

Off-CPU analysis is the study of blocking states,
or the code-path (stack trace) that led to them
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Off-CPU Time Flame Graph

More info http://www.brendangregg.com/blog/2016-02-01/linux-wakeup-offwake-profiling.html

Off-CPU time
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Off-CPU Time (zoomed): tar(1)

file read
from disk

directory read
from disk

Only showing kernel stacks in this example

pipe write
path read from disk

fstat from disk
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CPU + Off-CPU Flame Graphs: See Everything

CPU

Off-CPU
Everything

(All thread time)
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Off-Wake Time Flame Graph

Uses Linux enhanced BPF to merge off-CPU and waker stack in kernel context

Waker stack(s)

Blocked stack

Wokeup
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Chain Graphs

Walking the chain of wakeup stacks to reach root cause

Waker stack(s)
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FlameScope
Flame graphs can hide time-based issues of variation and perturbations.
FlameScope uses subsecond-offeset heat maps to show these issues. 
They can then be selected for the corresponding flame graph.

https://brendangregg.com/blog/2018-12-15/flamescope-origin.html
https://www.brendangregg.com/HeatMaps/subsecondoffset.html
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FlameScope Example

https://www.brendangregg.com/blog/2018-11-08/flamescope-pattern-recognition.html

How many patterns can you see?
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2. CPU Flame graphs

3. Stacks & Symbols 4. Advanced flame graphs

1. Implementations

Agenda Recap
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1. Interpret CPU flame graphs

2. Understand runtime challenges

3. Why eBPF for advanced flame graphs

A new tool to lower your cost, latency, and carbon

Take Aways
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Links & References
Flame Graphs

– "The Flame Graph" Communications of the ACM, Vol. 56, No. 6 (June 2016)
– http://queue.acm.org/detail.cfm?id=2927301 
– http://www.brendangregg.com/flamegraphs.html
– http://www.brendangregg.com/flamegraphs.html#Updates 
– http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html 
– http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html 
– http://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html 
– http://techblog.netflix.com/2015/07/java-in-flames.html 
– http://techblog.netflix.com/2016/04/saving-13-million-computational-minutes.html
– http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html 
– http://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html 
– http://www.brendangregg.com/blog/2016-02-01/linux-wakeup-offwake-profiling.html 
– http://www.brendangregg.com/blog/2016-02-05/ebpf-chaingraph-prototype.html   
– https://brendangregg.com/blog/2018-12-15/flamescope-origin.html
– https://github.com/brendangregg/FlameGraph
– https://github.com/spiermar/d3-flame-graph 
– https://github.com/Netflix/flamescope
– http://corpaul.github.io/flamegraphdiff/ 
– https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/user-interface-reference/window-fla

me-graph.html
– https://gprofiler.io/

Linux perf
– https://perf.wiki.kernel.org/index.php/Main_Page 
– http://www.brendangregg.com/perf.html 

Linux eBPF
– https://ebpf.io/ https://www.brendangregg.com/ebpf.html 

These slides: https://www.brendangregg.com/Slides/YOW2022_flame_graphs.pdf

http://queue.acm.org/detail.cfm?id=2927301
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/flamegraphs.html%23Updates
http://www.brendangregg.com/flamegraphs.html%23Updates
http://www.brendangregg.com/flamegraphs.html%23Updates
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html
http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html
http://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html
http://techblog.netflix.com/2015/07/java-in-flames.html
http://techblog.netflix.com/2015/07/java-in-flames.html
http://techblog.netflix.com/2015/07/java-in-flames.html
http://techblog.netflix.com/2016/04/saving-13-million-computational-minutes.html
http://techblog.netflix.com/2016/04/saving-13-million-computational-minutes.html
http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html
http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html
http://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html
http://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html
http://www.brendangregg.com/blog/2016-02-01/linux-wakeup-offwake-profiling.html
http://www.brendangregg.com/blog/2016-02-01/linux-wakeup-offwake-profiling.html
http://www.brendangregg.com/blog/2016-02-05/ebpf-chaingraph-prototype.html
http://www.brendangregg.com/blog/2016-02-05/ebpf-chaingraph-prototype.html
http://corpaul.github.io/flamegraphdiff/
http://corpaul.github.io/flamegraphdiff/
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/user-interface-reference/window-flame-graph.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/user-interface-reference/window-flame-graph.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/perf.html


Thank you!

http://www.brendangregg.com

brendan@intel.com

@brendangregg

Questions?

YOW! 2022
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More Implementations

These are in addition to the earlier examples.

(Note: This is not an an endorsement of any company/product or sponsored by anyone.)
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Java: SPF4J (2012)

Source: http://zolyfarkas.github.io/spf4j/#
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OSX: Instruments (2012; converter)

Source: https://schani.wordpress.com/2012/11/16/flame-graphs-for-instruments/
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Ruby: mini-profiler (2013)

Source: https://samsaffron.com/archive/2013/03/19/flame-graphs-in-ruby-miniprofiler
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Julia: ProfileView.jl (2013)

Source: https://github.com/timholy/ProfileView.jl (Tim Holy)
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Windows: Xperf (2013; converter)

Source: https://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/ 
(Bruce Dawson)
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Perl: NYTProf (2013)

Source: https://blog.timbunce.org/2013/04/08/nytprof-v5-flaming-precision/ (Tim Bunce)



130

Erlang: Eflame (2013)

Source: https://github.com/proger/eflame (Volodymyr Ky)
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Ruby: ruby-prof-flamegraph (2014)

Source: https://github.com/oozou/ruby-prof-flamegraph
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Node.js: flamegraph (2015)

Source: https://github.com/thlorenz/flamegraph (Thorsten Lorenz)
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Haskell: ghc-prof-flamegraph (2015)

Source: https://www.fpcomplete.com/blog/2015/04/ghc-prof-flamegraph/ (Francesco Mazzoli)
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Differentials: Flamegraphdiff (2015)

Source: http://corpaul.github.io/flamegraphdiff/ (Cor-Paul Bezemer)
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Java: jfr-flame-graph (2015)

Source: http://isuru-perera.blogspot.com/2015/05/flame-graphs-with-java-flight-recordings.html 
(M. Isuru Tharanga Chrishantha Perera)
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Clojure: Flames (2015)

Source: https://github.com/jstepien/flames/ (Jan Stępień)
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Python: python-flamegraph (2015)

Source: https://github.com/evanhempel/python-flamegraph (Evan Hempel)
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Strongloop: Arc (2015)

Source: https://es.slideshare.net/jguerrero999/nodejs-transaction-tracing-root-cause-analysis-with-
strongloop-arc
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Java: perfj (2015)

Source: https://github.com/coderplay/perfj  (Min Zhou)



140

Golang: Uber go-torch (2015)

Source: https://github.com/uber-archive/go-torch
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Intel: processor trace converter (2015)

Source: http://halobates.de/blog/p/329 (Andi Kleen)
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Nylas: perftools (2015)

Source: https://www.nylas.com/blog/performance/ (code by Eben Freeman)
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Django: djdt-flamegraph (2015)

Source: https://github.com/blopker/djdt-flamegraph (Bo Lopker)
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NodeSource: Nsolid (Node.js; 2015)

Source: https://nodesource.com/blog/understanding-cpu-flame-graphs
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D3: d3-flame-graphs (2015)

Source: https://cimi.io/d3-flame-graphs/ (Alex Ciminian)
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Golang: Goprofui (2015)

Source: https://github.com/wirelessregistry/goprofui (Srdjan Marinovic, Julia Allyce)
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Rust: flame (2016)

Source: https://github.com/llogiq/flame (Ty Overby)
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Dell Cloud Manager: Gumshoe Load Investigator (2016)

Source: https://github.com/worstcase/gumshoe (Jonathan Newbrough)

"This haystack is looking more like a needle every minute" -- source: https://youtu.be/GGJFZfwXJ44?t=225
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Uber: pyflame (Python; 2016)

Source: https://www.uber.com/en-AU/blog/pyflame-python-profiler/
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Android: erlang-atrace-flamegraphs (2017)

Source: https://blog.rhye.org/post/android-profiling-flamegraphs/ (Ross Schlaikjer)
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Java: grav (heap allocations; 2017)

Source: https://epickrram.blogspot.com/2017/09/heap-allocation-flamegraphs.html (Mark Price)
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Nudge: APM (for Java; 2017)

Source: https://nudge-apm.com/features/#profiling
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Java: clj-async-profiler (2017)

Source: http://clojure-goes-fast.com/blog/profiling-tool-async-profiler/ (Alexander Yakushev)
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.NET: codetrack (2017)

Source: https://www.getcodetrack.com/
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Node.js: Flamebearer (2018)

Source: https://github.com/mapbox/flamebearer (Volodymyr Agafonkin)



156

Opsian: always-on flame graphs (2018)

Source: https://www.opsian.com/blog/always-on-production-flame-graphs/ 
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Speedscope: left heavy view (2018)

Source: https://jamie-wong.com/post/speedscope/ (Jamie Wong)
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AppDynamics: flame graph (2018; now Cisco)

Source: https://docs.appdynamics.com/appd/20.x/en/application-monitoring/troubleshooting-applications/
event-loop-blocking-in-node-js#EventLoopBlockinginNode.js-FlameGraph
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Inferno: flame graph (Rust port; 2019)

Source: https://github.com/jonhoo/inferno (Jon Gjengset)
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SAP: HANA Dump Analyzer (2019)

Source: https://blogs.sap.com/2019/04/22/visualizing-olap-requests-on-sap-hana-system-with-concurrency-
flame-graph-using-sap-hana-dump-analyzer/
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Backtrace: flame graph (2019)

Source: https://support.backtrace.io/hc/en-us/articles/360040515971-Flame-graphs
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Instana: flame graph (2020; now IBM)

Source: https://www.ibm.com/docs/en/instana-observability/current?topic=processes-analyzing-profiles
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ej-technologies: JProfiler Flame Graph (for Java; 2020)

Source: https://www.ej-technologies.com/resources/jprofiler/help/doc/main/cpu.html
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Samsung: QA-Board (2020)

Source: https://samsung.github.io/qaboard/blog/2020/06/24/flame-graphs
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Microsoft Visual Studio: vscode-js-profile-flame (for JavaScript; 2020)

Source: https://marketplace.visualstudio.com/items?itemName=ms-vscode.vscode-js-profile-flame

Left Heavy view
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Pyroscope: flame graph (2020)

Source: https://pyroscope.io/blog/what-is-a-flamegraph/
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Uber: pprof++ (2021; for Golang)

Source: https://www.uber.com/en-AU/blog/pprof-go-profiler/ (Pengfei Su)
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Lightstep: flame graph (2021)

Source: https://www.instana.com/blog/instana-announces-the-industrys-first-commercial-continuous-
production-profiler/
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Dynatrace: allocation flame graph (2021)

Source: https://www.dynatrace.com/support/help/how-to-use-dynatrace/diagnostics/memory-profiling
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Pixie Labs: pod performance flamegraph (2021)

Source: https://docs.pixielabs.ai/tutorials/pixie-101/profiler/
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Apache Flink: flame graphs (2021)

off-CPU

Source: https://nightlies.apache.org/flink/flink-docs-master/docs/ops/debugging/flame_graphs/
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Embrace: Application-Not-Responding flame graph (2021)

Source: https://blog.embrace.io/solve-anrs-with-flame-graphs/
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Polar Signals: parca Continuous Profiling (2021)

Source: https://www.polarsignals.com/blog/posts/2022/08/30/optimizing-with-continuous-profiling/
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Dockyard: Flame On (for Elixir apps; 2022)

Source: https://dockyard.com/blog/2022/02/22/profiling-elixir-applications-with-flame-graphs-and-flame-on 
(Mike Binns)
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OpenResty: Xray (2022)

Source: https://openresty.com/en/xray (Yichun Zhang)
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Elastic: universal profiling (2022)

Source: https://www.elastic.co/observability/universal-profiling
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… and more

Thanks for all the open source contributions!

(Dec 2022)
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