
Net�ix Technology Blog Follow
Learn more about how Net�ix designs, builds, and operates our systems and engineering
organizations
Apr 4 · 6 min read

Net�ix FlameScope
We’re excited to release FlameScope: a new performance visualization

tool for analyzing variance, perturbations, single-threaded execution,

application startup, and other time-based issues. It has been created by

the Net�ix cloud performance engineering team and just released as

open source, and we welcome help from others to develop the project

further. (If it especially interests you, you might be interested in joining

Net�ix to work on it and other projects.)

FlameScope combines a subsecond-o�set heatmap for navigating a

pro�le with �ame graphs. This pro�le can be of CPU samples or other

events. Since it’s visual, it’s best demonstrated by the following one

minute video:

There is also a longer video of examples here.

Subsecond-O�set Heat Maps

Netflix FlameScope

https://medium.com/@NetflixTechBlog?source=post_header_lockup
https://medium.com/@NetflixTechBlog?source=post_header_lockup
https://www.youtube.com/watch?v=gRawd7CO-Q8
https://www.youtube.com/watch?v=cFuI8SAAvJg

If you’re familiar with �ame graphs, you’ll know they show an entire

pro�le at once, which can span one minute. That’s good for analyzing

steady workloads, but often there are small perturbations or variation

during that minute that you want to know about, which become a

needle-in-a-haystack search when shown with the full pro�le.

FlameScope solves this by starting with a subsecond-o�set heat map to

visualize these perturbations, then lets you select them for study with a

�ame graph. In other words, you can select an arbitrary continuous

time-slice of the captured pro�le, and visualize it as a �ame graph.

You might not be familiar with subsecond-o�set heat maps. They work

as shown in �gure 1, which has a mock ten row heat map, where:

x-axis: the passage of time, where each column represents one

second

y-axis: this is also time, showing the fraction within the second: its

subsecond o�set

color: shows how many events or samples that fell in that time

range: darker for more

•

•

•

https://medium.com/netflix-techblog/java-in-flames-e763b3d32166

Imagine you have an event timestamp of 11.25 seconds. The x

coordinate will be the 11th column, and the y coordinate will be the

row that’s one quarter from the bottom. The more events that occurred

around 11.25 seconds, the darker that block will be drawn.

Example
Here’s an example, with annotations showing the steps for selecting a

range:

There’s a number of interesting things from this production CPU

pro�le. The CPUs are busier between 0 and 5 seconds, shown as darker

colors. Around the 34 and 94 second mark (sounds like a 60 second

periodic task), the CPUs also become busier, but for a shorter duration.

And there are occasional bursts of heavy CPU activity for about 80

milliseconds, shown as short dark red stripes.

All of these details can be selected in FlameScope, which will then draw

a �ame graph just for that range. Here’s one of the short red stripes:

Figure 2. FlameScope selecting a time range

Ah, that’s Java garbage collection.

Instructions
Getting started instructions are listed (and will be updated) on the

github repository here. The quickest way to get started is:

$ git clone https://github.com/Netflix/flamescope
$ cd flamescope
$ pip install -r requirements.txt
$ python run.py

FlameScope comes with a sample pro�le to browse (where application

code has been redacted with ‘x’ characters). Here’s how to create new

pro�les on Linux, which can be added to the examples directory of

FlameScope for browsing:

$ sudo perf record -F 49 -a -g -- sleep 120
$ sudo perf script --header >
stacks.myproductionapp.2018_03_30_01
$ gzip stacks.myproductionapp.2018_03_30_01 # optional

That example shows a two minute CPU pro�le, sampling at 49 Hertz on

all CPUs. Any perf output with stack traces can be browsed with

FlameScope, including tracing events such as block I/O, context

switches, page faults, etc. Since the pro�le output can get large, it can

also be compressed with gzip (�amescope can read .gz).

Figure 3. Flame graph for a selected time range

https://github.com/Netflix/flamescope#installation--instructions
https://github.com/Netflix/flamescope

Why sample at 49 Hertz? Because 50 Hertz may sample in lock-step

with a timed activity, and over- or under-count. Why roughly 50 Hertz

in the �rst place? It’s not too slow and not too fast. Too slow and we

don’t have enough samples to paint across FlameScope’s 50 row

heatmap (the row count can be changed). Too fast and the overhead of

sampling can slow down the application.

Runtimes like Java can require extra steps to pro�le using perf

correctly, which have been documented in the past for generating �ame

graphs (including here). Since you may have already been running

these steps, you might have a library of old pro�les (perf script output)

that you can now explore using FlameScope.

Screenshots
Since FlameScope reads Linux perf pro�les, I already have a collection

from prior investigations. Here are some screenshots, showing

variation that I did not know about at the time.

https://medium.com/netflix-techblog/java-in-flames-e763b3d32166

Not all pro�les are this interesting. Some do just look like TV static: a

steady workload of random request arrivals and consistent latency. You

can �nd out with FlameScope.

Origin
FlameScope was created by the Net�ix cloud performance team, so far

involving Vadim Filanovsky, myself, Martin Spier, and our manager, Ed

Hunter, who has supported the project. The original issue was a

microservice that was su�ering latency spikes every 15 minutes or so,

cause unknown. Vadim found it corresponded to an increase in CPU

utilization that lasted only a few seconds. He had tried collecting CPU

�ame graphs to explain this further, but a) could not reliably capture a

one minute �ame graph covering the issue, as the onset of it kept

�uctuating; and b) capturing a two or three minute �amegraph didn’t

help either, and the issue was “drowned” in the normal workload

pro�le. Vadim asked me for help.

Since I had a two minute pro�le to begin with, I began by slicing it into

ten second ranges, and creating a �ame graph for each. This approach

looked promising as it revealed variation, so I sliced it even further

down to one second windows. Browsing these short windows solved

the problem and found the issue, however, it had become a laborious

task. I wanted a quicker way.

Subsecond-o�set heat maps were something I invented many years

ago, but they haven’t seen much adoption or use so far. I realized they

would be a great way to navigate a pro�le, allowing variance to be

visualized not just for whole seconds but also for fractions within a

second. I did a quick prototype which proved the idea worked, and

discussed turning it into a real tool with Martin. The annotated heat

map in this post shows Vadim’s original pro�le, and the issue was the

CPU activity in the �rst few seconds.

Martin has done most of the architecture design and coding for

FlameScope, which includes his newer d3-based version of

FlameGraphs: d3-�ame-graph, and his d3-based heat maps: d3-

heatmap2. It’s great to see them come together in FlameScope.

Future Work
There’s more features we have planned, and we’ll add tickets to github

in case others would like to help. They include more interactive

features, such as palette selection and data transformations. There

should be a button to save the �nal �ame graph as a stand alone SVG.

Other pro�le sources can be supported, not just Linux perf. And there

should be a way to show the di�erence between the selected range and

the baseline (the whole pro�le).

If you’re reading this months in the future, some of these extra features

may already exist: check out the latest on

https://github.com/Net�ix/�amescope.

FlameScope was developed by Martin Spier and Brendan Gregg, Net�ix

cloud performance engineering team. Blog post by Brendan Gregg.

https://github.com/spiermar/d3-flame-graph
https://github.com/spiermar/d3-heatmap2
https://github.com/Netflix/flamescope

