
System	 Methodology	
Holis0c	 Performance	 Analysis	 on	

Modern	 Systems	

Brendan Gregg
Senior Performance Architect

Jun,	 2016	 ACM Applicative 2016

Apollo LMGC
performance analysis

ERASABLE	
MEMORY	

CORE	 SET	
AREA	

VAC	 SETS	

FIXED	
MEMORY	

Background	

History	
•  System Performance Analysis up to the '90s:

–  Closed source UNIXes and applications
–  Vendor-created metrics and performance tools
–  Users interpret given metrics

•  Problems
–  Vendors may not provide the best metrics
–  Often had to infer, rather than measure
–  Given metrics, what do we do with them?

ps alx
 F S UID PID PPID CPU PRI NICE ADDR SZ WCHAN TTY TIME CMD
 3 S 0 0 0 0 0 20 2253 2 4412 ? 186:14 swapper
 1 S 0 1 0 0 30 20 2423 8 46520 ? 0:00 /etc/init
 1 S 0 16 1 0 30 20 2273 11 46554 co 0:00 –sh
[…]

Today	
1.  Open source

–  Operating systems: Linux, BSDs, illumos, etc.
–  Applications: source online (Github)

2.  Custom metrics
–  Can patch the open source, or,
–  Use dynamic tracing (open source helps)

3.  Methodologies
–  Start with the questions, then make metrics to answer them
–  Methodologies can pose the questions

Biggest problem with dynamic tracing has been what to do with it.
Methodologies guide your usage.

Crystal	 Ball	 Thinking	

An#-‐Methodologies	

Street	 Light	 An#-‐Method	
1.  Pick observability tools that are

–  Familiar
–  Found on the Internet
–  Found at random

2.  Run tools
3.  Look for obvious issues

Drunk	 Man	 An#-‐Method	
•  Drink Tune things at random until the problem goes away

Blame	 Someone	 Else	 An#-‐Method	
1.  Find a system or environment component you are not

responsible for
2.  Hypothesize that the issue is with that component
3.  Redirect the issue to the responsible team
4.  When proven wrong, go to 1

Traffic	 Light	 An#-‐Method	
1.  Turn all metrics into traffic lights
2.  Open dashboard
3.  Everything green? No worries, mate.

•  Type I errors: red instead of green
–  team wastes time

•  Type II errors: green instead of red
–  performance issues undiagnosed
–  team wastes more time looking elsewhere

Traffic lights are suitable for objective metrics (eg, errors),
not subjective metrics (eg, IOPS, latency).

Methodologies	

Performance	 Methodologies	
System Methodologies:

–  Problem statement method
–  Functional diagram method
–  Workload analysis
–  Workload characterization
–  Resource analysis
–  USE method
–  Thread State Analysis
–  On-CPU analysis
–  CPU flame graph analysis
–  Off-CPU analysis
–  Latency correlations
–  Checklists
–  Static performance tuning
–  Tools-based methods
…

•  For system engineers:
–  ways to analyze unfamiliar

systems and applications

•  For app developers:
–  guidance for metric and

dashboard design

Collect your
own toolbox of
methodologies

Problem	 Statement	 Method	
1.  What makes you think there is a performance problem?
2.  Has this system ever performed well?
3.  What has changed recently?

–  software? hardware? load?
4.  Can the problem be described in terms of latency?

–  or run time. not IOPS or throughput.
5.  Does the problem affect other people or applications?
6.  What is the environment?

–  software, hardware, instance types?
versions? config?

Func0onal	 Diagram	 Method	
1.  Draw the functional diagram
2.  Trace all components in the data path
3.  For each component, check performance

Breaks up a bigger problem into
smaller, relevant parts

Eg, imagine throughput
between the UCSB 360 and
the UTAH PDP10 was slow…

ARPA	 Network	 1969	

Workload	 Analysis	
•  Begin with application metrics & context
•  A drill-down methodology
•  Pros:

–  Proportional,
accurate metrics

–  App context
•  Cons:

–  App specific
–  Difficult to dig from

app to resource

Applica0on	
	
	 System	 Libraries	

System	 Calls	

Kernel	

Hardware	

Workload	

Analysis	

Workload	 Characteriza0on	
•  Check the workload: who, why, what, how

–  not resulting performance

•  Eg, for CPUs:
1.  Who: which PIDs, programs, users
2.  Why: code paths, context
3.  What: CPU instructions, cycles
4.  How: changing over time

Target	 Workload	

Workload	 Characteriza0on:	 CPUs	
Who

How What

Why

top CPU	 sample	
flame	 graphs	

monitoring	 PMCs	

Resource	 Analysis	
•  Typical approach for system performance analysis:

begin with system tools & metrics
•  Pros:

–  Generic
–  Aids resource

perf tuning
•  Cons:

–  Uneven coverage
–  False positives

Applica0on	
	
	 System	 Libraries	

System	 Calls	

Kernel	

Hardware	

Workload	

Analysis	

The	 USE	 Method	
•  For every resource, check:

1.  Utilization: busy time
2.  Saturation: queue length or time
3.  Errors: easy to interpret (objective)

Starts with the questions, then finds the tools
Eg, for hardware, check every resource incl. busses:

http://www.brendangregg.com/USEmethod/use-rosetta.html

ERASABLE	
MEMORY	

CORE	 SET	
AREA	

VAC	 SETS	

FIXED	
MEMORY	

Apollo Guidance
Computer

USE	 Method:	 SoZware	
•  USE method can also work for software resources

–  kernel or app internals, cloud environments
–  small scale (eg, locks) to large scale (apps). Eg:

•  Mutex locks:
–  utilization à lock hold time
–  saturation à lock contention
–  errors à any errors

•  Entire application:
–  utilization à percentage of worker threads busy
–  saturation à length of queued work
–  errors à request errors

Resource	
U0liza0on	

(%)	 X	

RED	 Method	
•  For every service, check that:

1.  Request rate
2.  Error rate
3.  Duration (distribution)

 are within SLO/A

Another exercise in posing questions
from functional diagrams

By Tom Wilkie: http://www.slideshare.net/weaveworks/monitoring-microservices

Load	
Balancer	

Web	
Proxy	

Web	 Server	

User	
Database	

Payments	
Server	

Asset	
Server	

Metrics	
Database	

Thread	 State	 Analysis	

Identify & quantify
time in states

Narrows further
analysis to state

Thread states are
applicable to all apps

State transition diagram

TSA:	 eg,	 Solaris	

TSA:	 eg,	 RSTS/E	
RSTS: DEC OS
from the 1970's

TENEX (1969-72)
also had Control-T
for job states

TSA:	 eg,	 OS	 X	
Instruments:	 Thread	 States	

On-‐CPU	 Analysis	

1.  Split into user/kernel states

–  /proc, vmstat(1)
2.  Check CPU balance

–  mpstat(1), CPU utilization heat map
3.  Profile software

–  User & kernel stack sampling (as a CPU flame graph)
4.  Profile cycles, caches, busses

–  PMCs, CPI flame graph

CPU	 U0liza0on	
Heat	 Map	

CPU	 Flame	 Graph	 Analysis	
1.  Take a CPU profile
2.  Render it as a flame graph
3.  Understand all software that is in >1% of samples

Discovers issues by their CPU usage
-  Directly: CPU consumers
-  Indirectly: initialization

of I/O, locks, times, ...

Narrows target of study
to only running code
-  See: "The Flame Graph",

CACM, June 2016

Flame	 Graph	

Java	 Mixed-‐Mode	 CPU	 Flame	 Graph	

Java	
JVM	

Kernel	

GC	

•  eg, Linux perf_events, with:
•  Java –XX:+PreserveFramePointer
•  Java perf-map-agent

CPI	 Flame	 Graph	
•  Profile cycle stack traces and instructions or stalls separately
•  Generate CPU flame graph (cycles) and color using other profile
•  eg, FreeBSD: pmcstat

red	 ==	 instruc0ons	
blue	 ==	 stalls	

Off-‐CPU	 Analysis	

Analyze off-CPU time
via blocking code path:
Off-CPU flame graph

Often need wakeup
code paths as well…

Off-‐CPU	 Time	 Flame	 Graph	

file	 read	
from	 disk	

directory	 read	
from	 disk	

pipe	 write	
path	 read	 from	 disk	

fstat	 from	 disk	

Stack	 depth	 Off-‐CPU	 0me	 Trace blocking events with
kernel stacks & time blocked
(eg, using Linux BPF)

Wakeup	 Time	 Flame	 Graph	

… can also associate wake-up stacks with off-CPU stacks
(eg, Linux 4.6: samples/bpf/offwaketime*)

Who did the wakeup:

Associate more than
one waker: the full
chain of wakeups

With enough stacks,
all paths lead to metal

An approach for
analyzing all off-CPU
issues

Chain	 Graphs	

Latency	 Correla0ons	
1.  Measure latency

histograms at different
stack layers

2.  Compare histograms
to find latency origin

Even better, use latency
heat maps
•  Match outliers based on

both latency and time

Checklists:	 eg,	 Linux	 Perf	 Analysis	 in	 60s	

1.  uptime
2.  dmesg | tail
3.  vmstat 1
4.  mpstat -P ALL 1
5.  pidstat 1
6.  iostat -xz 1
7.  free -m
8.  sar -n DEV 1
9.  sar -n TCP,ETCP 1
10.  top

load	 averages	

kernel	 errors	

overall	 stats	 by	 0me	

CPU	 balance	

process	 usage	

disk	 I/O	

memory	 usage	

network	 I/O	

TCP	 stats	

check	 overview	

http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html

1.	 RPS,	 CPU	 2.	 Volume	

6.	 Load	 Avg	

3.	 Instances	 4.	 Scaling	

5.	 CPU/RPS	

7.	 Java	 Heap	 8.	 ParNew	

9.	 Latency	 10.	 99th	 0le	

Checklists:	 eg,	 Neklix	 perfvitals	 Dashboard	

Sta0c	 Performance	 Tuning:	 eg,	 Linux	

Tools-‐Based	 Method	
1.  Try all the tools! May be an anti-pattern. Eg, OS X:

Other	 Methodologies	
•  Scientific method
•  5 Why's
•  Process of elimination
•  Intel's Top-Down Methodology
•  Method R

What	 You	 Can	 Do	

What	 you	 can	 do	
1.  Know what's now possible on modern systems

–  Dynamic tracing: efficiently instrument any software
–  CPU facilities: PMCs, MSRs (model specific registers)
–  Visualizations: flame graphs, latency heat maps, …

2.  Ask questions first: use methodologies to ask them
3.  Then find/build the metrics
4.  Build or buy dashboards to support methodologies

Dynamic	 Tracing:	 Efficient	 Metrics	

send	

receive	

tcpdump	

Kernel	

buffer	

file	 system	

1.	 read	
2.	 dump	

Analyzer	 1.	 read	
2.	 process	
3.	 print	

disks	

Old way: packet capture

New way: dynamic tracing

Tracer	 1.	 configure	
2.	 read	

tcp_retransmit_skb()	

Eg, tracing TCP retransmits

Dynamic	 Tracing:	 Measure	 Anything	

Those are Solaris/DTrace tools. Now becoming possible on all OSes:
FreeBSD & OS X DTrace, Linux BPF, Windows ETW

Performance	 Monitoring	 Counters	
Eg, FreeBSD PMC groups for Intel Sandy Bridge:

Visualiza0ons	
Eg, Disk I/O latency as a heat map, quantized in kernel:

USE	 Method:	 eg,	 Neklix	 Vector	
u0liza0on	 satura0on	 CPU:	

u0liza0on	 satura0on	 Network:	 load	

u0liza0on	 satura0on	 Memory:	

load	 satura0on	 Disk:	 u0liza0on	

USE	 Method:	 To	 Do	

Showing what is and is not commonly measured

U	 S	 E	
U	 S	 E	

U	 S	 E	

U	 S	 E	

U	 S	 E	

U	 S	 E	
U	 S	 E	

U	 S	 E	 U	 S	 E	 U	 S	 E	 U	 S	 E	

CPU	 Workload	 Characteriza0on:	 To	 Do	

Who

How What

Why

top,	 htop perf record -g
flame	 Graphs	

monitoring	 perf stat -a -d

Showing what is and is not commonly measured

Summary	
•  It is the crystal ball age of performance observability
•  What matters is the questions you want answered
•  Methodologies are a great way to pose questions

References	 &	 Resources	
•  USE Method

–  http://queue.acm.org/detail.cfm?id=2413037
–  http://www.brendangregg.com/usemethod.html

•  TSA Method
–  http://www.brendangregg.com/tsamethod.html

•  Off-CPU Analysis
–  http://www.brendangregg.com/offcpuanalysis.html
–  http://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html
–  http://www.brendangregg.com/blog/2016-02-05/ebpf-chaingraph-prototype.html

•  Static Performance Tuning, Richard Elling, Sun blueprint, May 2000
•  RED Method: http://www.slideshare.net/weaveworks/monitoring-microservices
•  Other system methodologies

–  Systems Performance: Enterprise and the Cloud, Prentice Hall 2013
–  http://www.brendangregg.com/methodology.html
–  The Art of Computer Systems Performance Analysis, Jain, R., 1991

•  Flame Graphs
–  http://queue.acm.org/detail.cfm?id=2927301
–  http://www.brendangregg.com/flamegraphs.html
–  http://techblog.netflix.com/2015/07/java-in-flames.html

•  Latency Heat Maps
–  http://queue.acm.org/detail.cfm?id=1809426
–  http://www.brendangregg.com/HeatMaps/latency.html

•  ARPA Network: http://www.computerhistory.org/internethistory/1960s
•  RSTS/E System User's Guide, 1985, page 4-5
•  DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and FreeBSD, Prentice Hall 2011
•  Apollo: http://www.hq.nasa.gov/office/pao/History/alsj/a11 http://www.hq.nasa.gov/alsj/alsj-LMdocs.html

Feb	
2016	

•  Questions?
•  http://slideshare.net/brendangregg
•  http://www.brendangregg.com
•  bgregg@netflix.com
•  @brendangregg

Jun,	 2016	 ACM Applicative 2016

