
Sep	2016	

Java Performance Analysis
on Linux with Flame Graphs
Brendan Gregg Senior Performance Architect

Complete Visibility

C
(Kernel)

C++
(JVM)

Java

Java
(Inlined)

C
(User)

Java Mixed-Mode Flame Graph via Linux perf_events

 Cloud
•  Tens of thousands of AWS EC2 instances
•  Mostly Java (Oracle JVM)

Instance:	usually	Ubuntu	Linux	

Java	(JDK	8)	

Tomcat	GC	and	
thread	
dump	
logging	

hystrix,	servo	

OpJonal	Apache,	
memcached,	
Node.js,	…	

Atlas,	Vector,	S3	
logs,	sar,	trace,	
perf,	perf-tools,	

(BPF	soon)	 Instance	

Scaling	Policy	
loadavg,	
latency,	…	

	

Cl
ou

dW
at
ch
,	s
er
vo
	

Auto	Scaling	
Group	

Instance	

Instance	

The Problem with Profilers

Java Profilers

Java

GC

Kernel,
libraries,
JVM

Java Profilers

•  Visibility
–  Java method execution
–  Object usage
–  GC logs
–  Custom Java context

•  Typical problems:
–  Sampling often happens at safety/yield points (skew)
–  Method tracing has massive observer effect
–  Misidentifies RUNNING as on-CPU (e.g., epoll)
–  Doesn't include or profile GC or JVM CPU time
–  Tree views not quick (proportional) to comprehend

•  Inaccurate (skewed) and incomplete profiles

System Profilers

Java Kernel
TCP/IP

GC

Idle
thread Time

Locks epoll JVM

System Profilers

•  Visibility
–  JVM (C++)
–  GC (C++)
–  libraries (C)
–  kernel (C)

•  Typical problems (x86):
–  Stacks missing for Java
–  Symbols missing for Java methods

•  Other architectures (e.g., SPARC) have fared better
•  Profile everything except Java

Workaround

•  Capture both:

•  An improvement, but system stacks are missing Java
context, and therefore hard to interpret

Java System

Java Mixed-Mode Flame Graph

Solution

Java JVM

Kernel

GC

Solution

•  Fix system profiling,
see everything:
–  Java methods
–  JVM (C++)
–  GC (C++)
–  libraries (C)
–  kernel (C)
–  Other apps

•  Minor Problems:
–  0-3% CPU overhead to enable frame pointers (usually <1%).
–  Symbol dumps can consume a burst of CPU

•  Complete and accurate (asynchronous) profiling

Java
JVM

Kernel

GC

Saving 13M CPU Minutes Per Day

•  eu

hXp://techblog.neZlix.com/2016/04/saving-13-million-computaJonal-minutes.html	

System Example

Exception handling consuming CPU

Profiling GC

GC internals, visualized:

CPU Profiling

CPU Profiling

A
B

block interrupt

on-CPU off-CPU

A
B
A A

B
A

syscall

time

•  Record stacks at a timed interval: simple and effective
–  Pros: Low (deterministic) overhead
–  Cons: Coarse accuracy, but usually sufficient

stack
samples: A

Stack Traces

•  A code path snapshot. e.g., from jstack(1):

$ jstack 1819

[…]

"main" prio=10 tid=0x00007ff304009000

nid=0x7361 runnable [0x00007ff30d4f9000]

 java.lang.Thread.State: RUNNABLE

at Func_abc.func_c(Func_abc.java:6)

at Func_abc.func_b(Func_abc.java:16)

at Func_abc.func_a(Func_abc.java:23)

at Func_abc.main(Func_abc.java:27)

running
parent
g.parent
g.g.parent

System Profilers

•  Linux
–  perf_events (aka "perf")

•  Oracle Solaris
–  DTrace

•  OS X
–  Instruments

•  Windows
–  XPerf, WPA (which now has flame graphs!)

•  And many others…

Linux perf_events

•  Standard Linux profiler
–  Provides the perf command (multi-tool)
–  Usually pkg added by linux-tools-common, etc.

•  Many event sources:
–  Timer-based sampling
–  Hardware events
–  Tracepoints
–  Dynamic tracing

•  Can sample stacks of (almost) everything on CPU
–  Can miss hard interrupt ISRs, but these should be near-zero. They can

be measured if needed (I wrote my own tools)

perf Profiling
perf record -F 99 -ag -- sleep 30
[perf record: Woken up 9 times to write data]
[perf record: Captured and wrote 2.745 MB perf.data (~119930 samples)]
perf report -n -stdio
[…]
Overhead Samples Command Shared Object Symbol
........
#
 20.42% 605 bash [kernel.kallsyms] [k] xen_hypercall_xen_version
 |
 --- xen_hypercall_xen_version
 check_events
 |
 |--44.13%-- syscall_trace_enter
 | tracesys
 | |
 | |--35.58%-- __GI___libc_fcntl
 | | |
 | | |--65.26%-- do_redirection_internal
 | | | do_redirections
 | | | execute_builtin_or_function
 | | | execute_simple_command
[… ~13,000 lines truncated …]

call tree
summary

Full perf report Output

… as a Flame Graph

Flame Graphs

•  Flame Graphs:
–  x-axis: alphabetical stack sort, to maximize merging
–  y-axis: stack depth
–  color: random (default), or a dimension

•  Currently made from Perl + SVG + JavaScript
–  Multiple d3 versions are being developed

•  References:
–  http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
–  http://queue.acm.org/detail.cfm?id=2927301
–  "The Flame Graph" CACM, June 2016

•  Easy to make
–  Converters for many profilers

Flame Graph Interpretation

a()

b() h()

c()

d()

e() f()

g()

i()

Flame Graph Interpretation (1/3)

Top edge shows who is running on-CPU,
and how much (width)

a()

b() h()

c()

d()

e() f()

g()

i()

Flame Graph Interpretation (2/3)

Top-down shows ancestry
e.g., from g():

h()

d()

e()

i()

a()

b()

c()

f()

g()

Flame Graph Interpretation (3/3)

a()

b() h()

c()

d()

e() f()

g()

i()

Widths are proportional to presence in samples
e.g., comparing b() to h() (incl. children)

Mixed-Mode Flame Graphs

•  Hues:
–  green == Java
–  aqua == Java (inlined)

•  if included
–  red == system
–  yellow == C++

•  Intensity:
–  Randomized to

differentiate frames
–  Or hashed on

function name

Java JVM
Kernel

Mixed-Mode

Differential Flame Graphs

•  Hues:
–  red == more samples
–  blue == less samples

•  Intensity:
–  Degree of difference

•  Compares two profiles
•  Can show other

metrics: e.g., CPI
•  Other types exist

–  flamegraphdiff

Differential

more less

Flame Graph Search

•  Color: magenta to show matched frames

search
button

Flame Charts

•  Flame charts: x-axis is time
•  Flame graphs: x-axis is population (maximize merging)

•  Final note: these are useful, but are not flame graphs

Stack Tracing

Broken Java Stacks on x86

•  These stacks are
1 or 2 levels deep,
with junk values

•  On x86 (x86_64),
hotspot uses the
frame pointer
register (RBP) as
general purpose

•  This "compiler optimization" breaks (RBP-based) stack walking
•  Once upon a time, x86 had fewer registers, and this made more

sense
•  gcc provides -fno-omit-frame-pointer to avoid doing this, but

the JVM had no such option…

perf record –F 99 –a –g – sleep 30
perf script
[…]
java 4579 cpu-clock:
 7f417908c10b [unknown] (/tmp/perf-4458.map)

java 4579 cpu-clock:
 7f41792fc65f [unknown] (/tmp/perf-4458.map)
 a2d53351ff7da603 [unknown] ([unknown])
[…]

… as a Flame Graph

Broken Java stacks
(missing frame pointer)

Fixing Stack Walking

Possibilities:
A.  Fix frame pointer-based stack walking (the default)

–  Pros: simple, supported by many tools
–  Cons: might cost a little extra CPU

B.  Use a custom walker (likely needing kernel support)
–  Pros: full stack walking (incl. inlining) & arguments
–  Cons: custom kernel code, can cost more CPU when in use

C.  Try libunwind and DWARF
–  Even feasible with JIT?

Our current preference is (A)

-XX:+PreserveFramePointer

•  I hacked OpenJDK x86_64 to support frame pointers
–  Taking RBP out of register pools, and adding function prologues. It

worked, I shared the patch.
–  It became JDK-8068945 for JDK 9 and JDK-8072465 for JDK 8

•  Zoltán Majó (Oracle) rewrote it, and it is now:
–  -XX:+PreserveFramePointer in JDK 9 and JDK 8 u60b19
–  Thanks to Zoltán, Oracle, and the other hotspot engineers for helping

get this done!

•  It might cost 0 – 3% CPU, depending on workload

Fixed Java Stacks
perf script
[…]
java 8131 cpu-clock:
 7fff76f2dce1 [unknown] ([vdso])
 7fd3173f7a93 os::javaTimeMillis() (/usr/lib/jvm…
 7fd301861e46 [unknown] (/tmp/perf-8131.map)
 7fd30184def8 [unknown] (/tmp/perf-8131.map)
 7fd30174f544 [unknown] (/tmp/perf-8131.map)
 7fd30175d3a8 [unknown] (/tmp/perf-8131.map)
 7fd30166d51c [unknown] (/tmp/perf-8131.map)
 7fd301750f34 [unknown] (/tmp/perf-8131.map)
 7fd3016c2280 [unknown] (/tmp/perf-8131.map)
 7fd301b02ec0 [unknown] (/tmp/perf-8131.map)
 7fd3016f9888 [unknown] (/tmp/perf-8131.map)
 7fd3016ece04 [unknown] (/tmp/perf-8131.map)
 7fd30177783c [unknown] (/tmp/perf-8131.map)
 7fd301600aa8 [unknown] (/tmp/perf-8131.map)
 7fd301a4484c [unknown] (/tmp/perf-8131.map)
 7fd3010072e0 [unknown] (/tmp/perf-8131.map)
 7fd301007325 [unknown] (/tmp/perf-8131.map)
 7fd301007325 [unknown] (/tmp/perf-8131.map)
 7fd3010004e7 [unknown] (/tmp/perf-8131.map)
 7fd3171df76a JavaCalls::call_helper(JavaValue*,…
 7fd3171dce44 JavaCalls::call_virtual(JavaValue*…
 7fd3171dd43a JavaCalls::call_virtual(JavaValue*…
 7fd31721b6ce thread_entry(JavaThread*, Thread*)…
 7fd3175389e0 JavaThread::thread_main_inner() (/…
 7fd317538cb2 JavaThread::run() (/usr/lib/jvm/nf…
 7fd3173f6f52 java_start(Thread*) (/usr/lib/jvm/…
 7fd317a7e182 start_thread (/lib/x86_64-linux-gn…

perf script
[…]
java 4579 cpu-clock:
 7f417908c10b [unknown] (/tmp/…

java 4579 cpu-clock:
 7f41792fc65f [unknown] (/tmp/…
 a2d53351ff7da603 [unknown] ([unkn…
[…]

Fixed Stacks Flame Graph

Java stacks
(but no symbols)

Stack Depth

•  perf had a 127 frame limit
•  Now tunable in Linux 4.8

–  sysctl -w kernel.perf_event_max_stack=512
–  Thanks Arnaldo Carvalho de Melo!

A	Java	microservice	
with	a	stack	depth	

of	>	900	
broken	stacks	

perf_event_max_stack=1024	

Symbols

Fixing Symbols

•  For JIT'd code, Linux perf already looks for an
externally provided symbol file: /tmp/perf-PID.map, and
warns if it doesn't exist

•  This file can be created by a Java agent

perf script
Failed to open /tmp/perf-8131.map, continuing without symbols
[…]
java 8131 cpu-clock:
 7fff76f2dce1 [unknown] ([vdso])
 7fd3173f7a93 os::javaTimeMillis() (/usr/lib/jvm…
 7fd301861e46 [unknown] (/tmp/perf-8131.map)
[…]

Java Symbols for perf

•  perf-map-agent
–  https://github.com/jrudolph/perf-map-agent
–  Agent attaches and writes the /tmp file on demand (previous versions

attached on Java start, wrote continually)
–  Thanks Johannes Rudolph!

•  Use of a /tmp symbol file
–  Pros: simple, can be low overhead (snapshot on demand)
–  Cons: stale symbols

•  Using a symbol logger with perf instead
–  Stephane Eranian contributed this to perf
–  See lkml for "perf: add support for profiling jitted code"

perf script
 java 14025 [017] 8048.157085: cpu-clock: 7fd781253265 Ljava/util/
HashMap;::get (/tmp/perf-12149.map)
[…]

fixed	
symbols	

Java Mixed-Mode Flame Graph

Stacks & Symbols

Java JVM

Kernel

GC

Stacks & Symbols (zoom)

Inlining

•  Many frames may be missing (inlined)
–  Flame graph may still make enough sense

•  Inlining can be tuned
–  -XX:-Inline to disable, but can be 80% slower!
–  -XX:MaxInlineSize and -XX:InlineSmallCode

 can be tuned a little to reveal more frames
•  Can even improve performance!

•  perf-map-agent can un-inline (unfoldall)
–  Adds inlined frames to symbol dump
–  flamegraph.pl --color=java will color these aqua
–  Thanks Johannes Rudolph, T Jake Luciani, and

Nitsan Wakart

Instructions

Instructions

1.  Check Java version
2.  Install perf-map-agent
3.  Set -XX:+PreserveFramePointer
4.  Profile Java
5.  Dump symbols
6.  Generate Mixed-Mode Flame Graph

Note these are unsupported: use at your own risk

Reference: http://techblog.netflix.com/2015/07/java-in-flames.html

1. Check Java Version

•  Need JDK8u60 or better
–  for -XX:+PreserveFramePointer

•  Upgrade Java if necessary

$ java -version
java version "1.8.0_60"
Java(TM) SE Runtime Environment (build 1.8.0_60-b27)
Java HotSpot(TM) 64-Bit Server VM (build 25.60-b23, mixed mode)

2. Install perf-map-agent

•  Check https://github.com/jrudolph/perf-map-agent for the
latest instructions. e.g.:

$ sudo bash
apt-get install -y cmake
export JAVA_HOME=/usr/lib/jvm/java-8-oracle
cd /usr/lib/jvm
git clone --depth=1 https://github.com/jrudolph/perf-map-agent
cd perf-map-agent
cmake .
make

3. Set -XX:+PreserveFramePointer

•  Needs to be set on Java startup
•  Check it is enabled (on Linux):

or

•  Measure overhead (should be small)

$ ps wwp `pgrep –n java` | grep PreserveFramePointer

$ jcmd `pgrep –n java` VM.flags | grep PreserveFramePointer

4. Profile Java

•  Using Linux perf_events to profile all processes, at 99
Hertz, for 30 seconds (as root):

•  Just profile one PID (broken on some older kernels):

•  These create a perf.data file

perf record -F 99 -a -g -- sleep 30

perf record -F 99 -p PID -g -- sleep 30

5. Dump Symbols

•  See perf-map-agent docs for updated usage
•  e.g., as the same user as java:

•  perf-map-agent contains helper scripts. I wrote my own:
–  https://github.com/brendangregg/Misc/blob/master/java/jmaps

•  Dump symbols quickly after perf record to minimize stale
symbols. How I do it:

$ cd /usr/lib/jvm/perf-map-agent/out
$ java -cp attach-main.jar:$JAVA_HOME/lib/tools.jar \
 net.virtualvoid.perf.AttachOnce PID

perf record -F 99 -a -g -- sleep 30; jmaps

6. Generate a Mixed-Mode Flame Graph

•  Using my FlameGraph software:

–  perf script reads perf.data with /tmp/*.map
–  out.stacks01 is an intermediate file; can be handy to keep

•  Finally open flame01.svg in a browser
•  Check for newer flame graph implementations (e.g., d3)

perf script > out.stacks01
git clone --depth=1 https://github.com/brendangregg/FlameGraph
cat out.stacks01 | ./FlameGraph/stackcollapse-perf.pl | \
 ./FlameGraph/flamegraph.pl --color=java --hash > flame01.svg

Optimizations

•  Linux 2.6+, via perf.data and perf script:

•  Linux 4.5+ can use folded output

–  Skips the CPU-costly stackcollapse-perf.pl step; see:
http://www.brendangregg.com/blog/2016-04-30/linux-perf-folded.html

•  Linux 4.9+, via BPF:

–  Most efficient: no perf.data file, summarizes in-kernel

git clone --depth 1 https://github.com/brendangregg/FlameGraph
cd FlameGraph
perf record -F 99 -a –g -- sleep 30
perf script | ./stackcollapse-perf.pl |./flamegraph.pl > perf.svg

git clone --depth 1 https://github.com/brendangregg/FlameGraph
git clone --depth 1 https://github.com/iovisor/bcc
./bcc/tools/profile.py -dF 99 30 | ./FlameGraph/flamegraph.pl > perf.svg

Linux 2.6

perf record

perf script

capture	stacks	

write	text	

stackcollapse-perf.pl

flamegraph.pl

perf.data	

write	samples	

reads	samples	

folded	output	

perf record

perf report
–g folded

capture	stacks	

folded	report	

awk

flamegraph.pl

perf.data	

write	samples	

reads	samples	

folded	output	

Linux	4.5	
count	stacks	(BPF)	

folded	
output	

flamegraph.pl

profile.py

Linux	4.9	

Linux	Profiling	OpJmizaJons	

Automation

Netflix Vector

Netflix Vector

Near real-time,
per-second metrics

Flame Graphs

Select
Metrics

Select Instance

Netflix Vector

•  Open source, on-demand, instance analysis tool
–  https://github.com/netflix/vector

•  Shows various real-time metrics
•  Flame graph support currently in development

–  Automating previous steps
–  Using it internally already
–  Also developing a new d3 front end

Advanced Analysis

Linux perf_events Coverage

… all possible with Java stacks

Advanced Flame Graphs

•  Any event can be flame graphed, provided it is issued in
synchronous Java context
–  Java thread still on-CPU, and event is directly triggered
–  On-CPU Java context is valid

•  Synchronous examples:
–  Disk I/O requests issued directly by Java à yes

•  direct reads, sync writes, page faults
–  Disk I/O completion interrupts à no*
–  Disk I/O requests triggered async, e.g., readahead à no*

* can be made yes by tracing and associating context

Page Faults

•  Show what triggered main memory (resident) to grow:

•  "fault" as (physical) main memory is allocated on-
demand, when a virtual page is first populated

•  Low overhead tool to solve some types of memory leak

perf record -e page-faults -p PID -g -- sleep 120

RES column in top(1) grows
because

Context Switches

•  Show why Java blocked and stopped running on-CPU:

•  Identifies locks, I/O, sleeps
–  If code path shouldn't block and looks random, it's an involuntary context switch. I

could filter these, but you should have solved them beforehand (CPU load).

•  e.g., was used to understand framework differences:

perf record -e context-switches -p PID -g -- sleep 5

vs

rxNetty Tomcat

futex

sys_poll

epoll futex

Disk I/O Requests

•  Shows who issued disk I/O (sync reads & writes):

•  e.g.: page faults in GC? This JVM has swapped out!:

perf record -e block:block_rq_insert -a -g -- sleep 60

GC

TCP Events

•  TCP transmit, using dynamic tracing:

•  Note: can be high overhead for high packet rates
–  For the current perf trace, dump, post-process cycle

•  Can also trace TCP connect & accept (lower overhead)
•  TCP receive is async

–  Could trace via socket read

perf probe tcp_sendmsg
perf record -e probe:tcp_sendmsg -a -g -- sleep 1; jmaps
perf script -f comm,pid,tid,cpu,time,event,ip,sym,dso,trace > out.stacks
perf probe --del tcp_sendmsg

TCP sends

CPU Cache Misses

•  In this example, sampling via Last Level Cache loads:

•  -c is the count (samples

once per count)
•  Use other CPU counters to

sample hits, misses, stalls

perf record -e LLC-loads -c 10000 -a -g -- sleep 5; jmaps
perf script -f comm,pid,tid,cpu,time,event,ip,sym,dso > out.stacks

CPI Flame Graph

•  Cycles Per
Instruction!
–  red == instruction

heavy
–  blue == cycle

heavy (likely mem
stall cycles)

zoomed:

Java Package Flame Graph

•  Sample on-CPU instruction pointer only (no stack)
–  Don't need -XX:+PreserveFramePointer

•  y-axis: package name hierarchy
–  java / util / ArrayList / ::size

perf record -F 199 -a -- sleep 30; ./jmaps
perf script | ./pkgsplit-perf.sh | ./flamegraph.pl > out.svg

no	-g	(stacks)	Linux 2.6+ (pre-BPF):

Links & References
•  Flame Graphs

–  http://www.brendangregg.com/flamegraphs.html
–  http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
–  http://queue.acm.org/detail.cfm?id=2927301
–  "The Flame Graph" CACM, Vol. 56, No. 6 (June 2016)
–  http://techblog.netflix.com/2015/07/java-in-flames.html
–  http://techblog.netflix.com/2016/04/saving-13-million-computational-minutes.html
–  http://techblog.netflix.com/2014/11/nodejs-in-flames.html
–  http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html

•  Linux perf_events
–  https://perf.wiki.kernel.org/index.php/Main_Page
–  http://www.brendangregg.com/perf.html
–  http://www.brendangregg.com/blog/2015-02-27/linux-profiling-at-netflix.html
–  Linux 4.5: http://www.brendangregg.com/blog/2016-04-30/linux-perf-folded.html

•  Netflix Vector
–  https://github.com/netflix/vector
–  http://techblog.netflix.com/2015/04/introducing-vector-netflixs-on-host.html

•  hprof: http://www.brendangregg.com/blog/2014-06-09/java-cpu-sampling-using-hprof.html

Thanks

•  Questions?
•  http://techblog.netflix.com
•  http://slideshare.net/brendangregg
•  http://www.brendangregg.com
•  bgregg@netflix.com
•  @brendangregg

Sep	2016	

