
Open Source
Systems

Performance
Brendan Gregg

Lead Performance Engineer
Joyent

Jul, 2013

A Play in Three Acts
 A tale of operating systems, performance, and open source
 Dramatis Personae
- Solaris, an Operating System
- Brendan Gregg, a Performance Engineer
- Linux, a Kernel

 Acts
- 1. Before open source (traditional tools)
- 2. Open source (source code-based tracing)
- 3. Closed source

Setting the Scene: Why Performance?
 Reduce IT Spend

- price/performance
 Choose performing components

- evaluation (benchmarking) of software and hardware
 Develop scalable architectures

- understand system limits and develop around them
 Solve issues

Setting the Scene: What is Systems Performance?
 Analysis of:

- A) the kernel
- 2-20% wins: tuning TCP, NUMA, etc
- 2-200x wins: latency outliers, bugs, etc

- B) applications from system context
- 2-2000x wins: eliminating

unnecessary work
 The basis is the system
 The target is everything, down to metal
 Think LAMP not AMP

Applications

Block Device Interface
Volume Managers

File Systems
VFS

System Libraries

Device Drivers

System Call Interface

Metal

Systems Performance Analysis

Ke
rn

el

Scheduler

Virtual
MemoryEthernet

IP
TCP/UDP
Sockets

Firmware

Part 1. Before Open Source

Part 1. Before Open Source
 The year is 2002
 Enter Solaris 9, stage left
 Solaris 9 is not open source

Solaris 9
 Numerous performance observability tools

 Performance, including resource controls and observability, were main features

Scope Type Tools
system counters vmstat(1M), iostat(1M), netstat(1M), kstat(1M), sar(1)
system tracing snoop(1M), prex(1M), tnfdump(1)
process counters ps(1), prstat(1M), ptime(1)
process tracing truss(1), sotruss(1), apptrace(1)
both profiling lockstat(1M), cpustat(1M), cputrack(1)

Systems Performance
 Typified by Unix tools like vmstat(1M) (from BSD):

 Some drill-down were possible with options; eg, the Solaris -p:

 Despite many tools, options, and metrics, the extent of observability was limited.
This can be illustrated using a functional diagram

$ vmstat 1
 kthr memory page disk faults cpu
 r b w swap free re mf pi po fr de sr cd cd s0 s5 in sy cs us sy id
 0 0 0 8475356 565176 2 8 0 0 0 0 1 0 0 -0 13 378 101 142 0 0 99
 1 0 0 7983772 119164 0 0 0 0 0 0 0 224 0 0 0 1175 5654 1196 1 15 84
 0 0 0 8046208 181600 0 0 0 0 0 0 0 322 0 0 0 1473 6931 1360 1 7 92
[...]

$ vmstat -p 1
 memory page executable anonymous filesystem
 swap free re mf fr de sr epi epo epf api apo apf fpi fpo fpf
 8475336 565160 2 8 0 0 1 0 0 0 0 0 0 0 0 0
 7972332 107648 1 29 0 0 0 0 0 0 0 0 0 0 0 0
 7966188 101504 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[...]

Operating System Functional Diagram

Applications
DBs, all server types, ...

Block Device Interface Ethernet
Volume Managers IP

File Systems TCP/UDP
VFS Sockets

Disk Disk Port Port

Expander Interconnect

I/O Bus

Interface Transports
I/O Controller Network Controller

I/O Bridge

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface CPU
Interconnect

Memory
Bus

CPU
1

DRAM

Operating System Hardware

Ke
rn

el

Solaris 9 Observability Coverage

Applications
DBs, all server types, ...

Block Device Interface Ethernet
Volume Managers IP

File Systems TCP/UDP
VFS Sockets

Disk Disk Port Port

Expander Interconnect

I/O Bus

Interface Transports
I/O Controller Network Controller

I/O Bridge

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface CPU
Interconnect

Memory
Bus

CPU
1

DRAM

Operating System Hardware

So
la

ris
 K

er
ne

l
truss

apptrace

sotruss

iostat
prex

vmstat

mpstat

prstat
ps

cpustat
cputrack

snoop

netstat

lockstat

kstat

sar
kstat

Various:

netstat
kstat

Problems
 Below the syscall interface was dark, if not pitch black
 Many components either had:

- No metrics at all
- Undocumented metrics (kstat)

 Certain performance issues could not be analyzed
- Time from asking Sun for a new performance metric to having it in production could

be months or years or never
- You solve what the current tools let you: the “tools method” of iterating over existing

tools and metrics
 Situation largely accepted as a better way wasn’t known
 Much systems performance literature was written in this era, and is still around

High Performance Tuning
 Performance experts were skilled in the art of inference and experimentation

- Study Solaris Internals for background
- Determine kernel behavior based on indirect metrics
- Create known workloads to test undocumented metrics,

and to explore system behavior
- Heavy use of the Scientific method

 Science is good, source is better

... If the Universe was Open Source

vi universe/particles.c:

photon_t *
spontaneous_emission(electron_t *e) {
 photon_t *p;
 if (e->e_orbit > 1) {
 p = palloc(e);
 e->e_orbit--;
 } else {
 electron_capture(e->e_nucleusp);
 return (NULL)
 }
 return (p);
}

vi universe/include/electron.h:

struct electron {
 mass_t e_mass; /* electron mass */
 charge_t e_charge; /* electron charge */
 uint64_t e_flags; /* 0x01 particle; 0x10 wave */
 int e_orbit; /* current orbit level */
 boolean_t e_matter; /* 1 = matter; 0 = antimatter */
 [...]
} electron_t;

Part 2. Open Source

Part 2. Open Source
 The year is 2005
 Solaris 10, as OpenSolaris, becomes open source

- In response to Linux, which always was

Open Source Metrics
 Undocumented kstats could now be understood from source

- it was like being handed the source code to the Universe
- I wasn’t a Sun badged employee; I’d been working without source access

 Tool metrics could also be better understood, and exact behavior of the kernel

 For example, where does “r” come from?

$ vmstat 1
 kthr memory page disk faults cpu
 r b w swap free re mf pi po fr de sr cd cd s0 s5 in sy cs us sy id
 0 0 0 8475356 565176 2 8 0 0 0 0 1 0 0 -0 13 378 101 142 0 0 99
 1 0 0 7983772 119164 0 0 0 0 0 0 0 224 0 0 0 1175 5654 1196 1 15 84

Understanding “r”
 Starting with vmstat(1M)’s source, and drilling down:

usr/src/cmd/stat/vmstat/vmstat.c:

static void
printhdr(int sig)
{
[...]
 if (swflag)
 (void) printf(" r b w swap free si so pi po fr de sr ");
 else
 (void) printf(" r b w swap free re mf pi po fr de sr ");
[...]

static void
dovmstats(struct snapshot *old, struct snapshot *new)
{
[...]
 adjprintf(" %*lu", 1, DELTA(s_sys.ss_sysinfo.runque) / sys_updates);

Understanding “r”, cont.
 Searching on ss_sysinfo:

usr/src/cmd/stat/common/statcommon.h:

struct sys_snapshot {
 sysinfo_t ss_sysinfo;
[...]

usr/src/uts/common/sys/sysinfo.h:

typedef struct sysinfo { /* (update freq) update action */
 uint_t updates; /* (1 sec) ++ */
 uint_t runque; /* (1 sec) += num runnable procs */
 uint_t runocc; /* (1 sec) ++ if num runnable procs > 0 */
 uint_t swpque; /* (1 sec) += num swapped procs */
 uint_t swpocc; /* (1 sec) ++ if num swapped procs > 0 */
 uint_t waiting; /* (1 sec) += jobs waiting for I/O */
} sysinfo_t;

Understanding “r”, cont.
 ss_sysinfo is populated from kstat:

usr/src/cmd/stat/common/acquire.c:

int
acquire_sys(struct snapshot *ss, kstat_ctl_t *kc)
{
 size_t i;
 kstat_named_t *knp;
 kstat_t *ksp;

 if ((ksp = kstat_lookup(kc, "unix", 0, "sysinfo")) == NULL)
 return (errno);

 if (kstat_read(kc, ksp, &ss->s_sys.ss_sysinfo) == -1)
 return (errno);
[...]

Understanding “r”, cont.
 Searching on runque population, in the kernel:

usr/src/uts/common/os/clock.c:

static void
clock(void)
{
 * There is additional processing which happens every time
 * the nanosecond counter rolls over which is described
 * below - see the section which begins with : if (one_sec)
[...]
 do {
 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
 nrunnable += cpu_nrunnable;
[...]
 } while ((cp = cp->cpu_next) != cpu_list);
[...]
 if (one_sec) {
[...]
 if (nrunnable) {
 sysinfo.runque += nrunnable;
 sysinfo.runocc++;
 }

Once-a-second snapshots?
That’s good to know!

Statistic Spelunking
 A matter of browsing and reading source code

- I use cscope, a text-based source code browser:
 Doesn’t require expertise to

begin with: keep reading code
until it makes sense

 Might take hours or days if
you are new to a complex
code base

 You may only do this three
times in your career, but
each time was worth it!

C symbol: runque

 File Function Line
0 sa.h <global> 188 uint64_t runque;
1 sysinfo.h <global> 132 uint_t runque;
2 sar.c prt_q_opt 919 (float)xx->si.runque / (float)xx->si.runocc,
3 kstat.c save_sysinfo 1066 SAVE_UINT32(ksi, sysinfo, runque);
4 vmstat.c dovmstats 316 adjprintf(" %*lu", 1,
 DELTA(s_sys.ss_sysinfo.runque) / sys_updates);
5 clock.c clock 862 sysinfo.runque += nrunnable;

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

Open Source Dynamic Tracing
 Solaris 10 also provided Dynamic Tracing (DTrace), which can observe virtually

everything
 Core feature of all later OpenSolaris derivatives, including SmartOS and OmniOS
 Observability gaps now filled

Solaris 10/SmartOS/OmniOS Observability Coverage

Applications
DBs, all server types, ...

Block Device Interface Ethernet
Volume Managers IP

File Systems TCP/UDP
VFS Sockets

Disk Disk Port Port

Expander Interconnect

I/O Bus

Interface Transports
I/O Controller Network Controller

I/O Bridge

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface CPU
Interconnect

Memory
Bus

CPU
1

DRAM

Operating System Hardware

So
la

ris
/il

lu
m

os

Ke
rn

el
truss

iostat

vmstat

mpstat

prstat
ps

cpustat
cputrack

snoop

netstat

sar
kstat

lockstat

Various:

kstat

netstat
kstat

dtrace

plockstat

intrstat

Open Source Dynamic Tracing: Example
 Given the kernel source code, eg, ZFS SPA sync:

 Trace and time it using the DTrace function boundary tracing (fbt) provider:

usr/src/uts/common/fs/zfs/spa.c:

/*
 * Sync the specified transaction group. New blocks may be dirtied as
 * part of the process, so we iterate until it converges.
 */
void
spa_sync(spa_t *spa, uint64_t txg)
{
 dsl_pool_t *dp = spa->spa_dsl_pool;
[...]

dtrace -n 'fbt::spa_sync:entry { self->ts = timestamp; } fbt::spa_sync:return /self->ts/
{ printf("%Y %d ms", walltimestamp, (timestamp - self->ts) / 1000000); self->ts = 0; }'
dtrace: description 'fbt::spa_sync:entry ' matched 2 probes
CPU ID FUNCTION:NAME
 0 53625 spa_sync:return 2013 Jul 26 17:37:02 12 ms
 0 53625 spa_sync:return 2013 Jul 26 17:37:08 726 ms
 6 53625 spa_sync:return 2013 Jul 26 17:37:17 6913 ms
 6 53625 spa_sync:return 2013 Jul 26 17:37:17 59 ms

Awesome!

Dynamic Tracing Scripts

Applications
DBs, all server types, ...

Block Device Interface Ethernet
Volume Managers IP

File Systems TCP/UDP
VFS Sockets

System Libraries

Device Drivers

Scheduler

Virtual
Memory

System Call Interface

iosnoop, iotop
disklatency.d

satacmds.d
satalatency.d

scsicmds.d
scsilatency.d

sdretry.d, sdqueue.d

ide*.d, mpt*.d

priclass.d, pridist.d
cv_wakeup_slow.d
displat.d, capslat.d

opensnoop, statsnoop
errinfo, dtruss, rwtop
rwsnoop, mmap.d, kill.d
shellsnoop, zonecalls.d
weblatency.d, fddist

dnlcsnoop.d
zfsslower.d

ziowait.d
ziostacks.d

spasync.d
metaslab_free.d

fswho.d, fssnoop.d
sollife.d

solvfssnoop.d

hotuser, umutexmax.d, lib*.d
node*.d, erlang*.d, j*.d, js*.d
php*.d, pl*.d, py*.d, rb*.d, sh*.d
mysql*.d, postgres*.d, redis*.d, riak*.d

Language Providers:

Databases:

sotop.d, socketio.d, so1stbyte.d, soconnect.d, soaccept.d
ipio.d, ipproto.d, ipstat.d, ipfbtsnoop.d, icmpsnoop.d
tcp1stbyte.d, tcpaccept.d, tcpconnect.d, tcpconnlat.d, tcpio.d
tcpbytes.d, tcpsize.d, tcpnmap.d, udpio.d, udpstat.d

cifs*.d, iscsi*.d
nfsv3*.d, nfsv4*.d

ssh*.d, httpd*.d

:Services

minfbypid.d
pgpginbypid.d

macops.d
ngesnoop.d, ngelink.d

These are some of my scripts from the DTraceToolkit, the DTrace book, and other collections. I’d add more but I ran out of room.

Modern Systems Performance
 Typified by an abundance of high

resolution useful metrics (latency)
 No longer a problem of missing

metrics, but how to visualize many
metrics, and across clouds
- eg, latency heat maps:

 Prior tools are useful as starting
points, with tracing to dig deeper

 In the following sections, I’ll
describe modern Linux Systems Performance, summarizing how traditional and new
tools can be used together
- I’ll group dtrace/systemtap/perf/lttng/ktap/etc as “dynamic tracing”, which is a

simplification: some needs may not be met by all those tools

Linux CPU Analysis
 Traditional tools:

- 1. system wide usage vmstat

- 2. per-processor usage mpstat

- 3. per-process usage top, ps

- 4. user- or kernel-stack profiling perf record -agF

- 5. cycle analysis perf stat
 Modern tools:

- 6. tracing scheduler latency perf sched
- 7. tracing CPU usage of functions dynamic/static tracing
- 8. tracing CPU consumption of spin locks dynamic/static tracing
- 9. CPU cross call tracing dynamic/static tracing
- 10. interrupt tracing dynamic/static tracing

Linux Memory Analysis
 Traditional tools:

- 1. system wide usage vmstat

- 2. per-process usage top

- 3. kernel usage /proc/meminfo, slaptop

- 4. swapping activity sar
- 5. leak detection valgrind

 Modern tools:
- 6. tracing allocations dynamic tracing
- 7. tracing page faults dynamic/static tracing
- 8. tracing kswapd activity dynamic/static tracing

Linux File System Analysis
 Traditional tools:

- 1. cache usage free, /proc/meminfo

- 2. syscall access strace (expensive)
 Modern tools:

- 3. tracing VFS accesses dynamic/static tracing
- 4. tracing file system latency latencytop, dynamic/static tracing
- 5. tracing file system internals dynamic/static tracing

Linux Disk Analysis
 Traditional tools:

- 1. per-disk statistics iostat

- 2. per-process usage pidstat -d, iotop
 Modern tools:

- 3. disk I/O latency tracing blktrace, static tracing
- 4. lower I/O stack tracing dynamic/static tracing
- 5. SCSI command tracing dynamic/static tracing
- 6. device driver tracing dynamic/static tracing

Linux Network Analysis
 Traditional tools:

- 1. system wide usage netstat -s

- 2. per-interface usage netstat -i, sar -n DEV, ip

- 3. TCP statistics netstat -s, sar -n TCP

- 4. packet tracing tcpdump

- 5. socket call tracing strace (expensive)
- 6. experimental tests ping, traceroute

 Modern tools:
- 6. tracing socket-level latency dynamic/static tracing
- 7. TCP retransmit (only) tracing dynamic tracing
- 8. tracing TCP kernel internals dynamic tracing

Linux Network Analysis, Example
 TCP retransmits: given tcp_retransmit_skb(), show the dest IP addr. Source code:

net/ipv4/tcp_output.c:

int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
{
 struct tcp_sock *tp = tcp_sk(sk);
 int err = __tcp_retransmit_skb(sk, skb);
[...]

include/linux/tcp.h:

struct tcp_sock {
 /* inet_connection_sock has to be the first member of tcp_sock */
 struct inet_connection_sock inet_conn;
[...]

include/net/inet_connection_sock.h:

struct inet_connection_sock {
 /* inet_sock has to be the first member! */
 struct inet_sock icsk_inet;
[...]

Linux Network Analysis, Example
 ... More spelunking, like earlier. Not trivial, but doable.

include/net/inet_sock.h:

struct inet_sock {
 /* sk and pinet6 has to be the first two members of inet_sock */
 struct sock sk;
#if IS_ENABLED(CONFIG_IPV6)
 struct ipv6_pinfo *pinet6;
#endif
 /* Socket demultiplex comparisons on incoming packets. */
#define inet_daddr sk.__sk_common.skc_daddr
[...]

include/net/sock.h

struct sock {
 /*
 * Now struct inet_timewait_sock also uses sock_common, so please just
 * don't add nothing before this first member (__sk_common) --acme
 */
 struct sock_common __sk_common;
[...]

Here it is

Linux Network Analysis, Example Script
 TCP retransmit tracing script, using DTrace4Linux (prototype):

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN { trace("Tracing TCP retransmits... Ctrl-C to end.\n"); }

fbt::tcp_retransmit_skb:entry {
 this->so = (struct sock *)arg0;
 this->d = (unsigned char *)&this->so->__sk_common.skc_daddr;
 printf("%Y: retransmit to %d.%d.%d.%d, by:", walltimestamp,
 this->d[0], this->d[1], this->d[2], this->d[3]);
 stack(99);
}

Linux Network Analysis, Example Output
 TCP retransmit tracing script, using DTrace4Linux (prototype):

./tcpretransmit.d
Tracing TCP retransmits... Ctrl-C to end.
2013 Feb 23 18:24:11: retransmit to 10.2.124.2, by:
 kernel`tcp_retransmit_timer+0x1bd
 kernel`tcp_write_timer+0x188
 kernel`run_timer_softirq+0x12b
 kernel`tcp_write_timer
 kernel`__do_softirq+0xb8
 kernel`read_tsc+0x9
 kernel`sched_clock+0x9
 kernel`sched_clock_local+0x25
 kernel`call_softirq+0x1c
 kernel`do_softirq+0x65
 kernel`irq_exit+0x9e
 kernel`smp_apic_timer_interrupt+0x6e
 kernel`apic_timer_interrupt+0x6e
[...]

Linux Network Example, cont.
 I created a custom performance tool on the fly, without kernel changes
 Would it be possible if the kernel wasn’t open source?

Opportunities
 Open source allows dynamic tracing: otherwise you are tracing blind
 Dynamic tracing allows custom metrics and scripts (tools) to be written

- fill in all observability gaps; can solve most performance issues
 Many people will use dynamic tracing: eg, DTraceToolkit, DTrace book, company tools;

only some may author the tools: the OS or perf engineer on your team (which is ok)
 Dynamic tracing also allows new methodologies

- prior methodologies constrained by existing tools and metrics
- new methodologies can be explored, as any question posed

can be answered
 Examples of new methodologies

- USE method
- Thread State Analysis method

Challenges
 Systems performance literature written for the pre-open source Unix days

- Gives the impression that performance ends with older static tools
 DTrace not on Linux yet

- Two ports are in progress:
- DTrace4Linux: https://github.com/dtrace4linux/linux
- Oracle Linux DTrace

 Instead of waiting, you can try an illumos-kernel based distro like SmartOS
- illumos is the surviving fork of OpenSolaris. Which brings us to Act 3.

https://github.com/dtrace4linux/linux
https://github.com/dtrace4linux/linux

Act 3. Closed Source

Act 3. Closed Source
 The year is 2010
 Oracle stops releasing updates for OpenSolaris
 Oracle Solaris 11 is released a year later, closed source
 Provides us with a unique additional perspective for open source systems performance

Closed Source Metrics
 This closed the only documentation for many metrics and kernel internals

- Back to inference and experimentation by the end user
- Will get harder over time as documentation ages: without a Solaris Internals 3rd

Edition, kernel internals may become as opaque as it was in the 90’s

Closed Source Dynamic Tracing
 Makes using the DTrace fbt provider much harder

- Hypothetical example to show how this could manifest:
- Dynamic tracing of ZFS SPA sync during a performance investigation:

Where’d spa_sync() go? Did it get renamed or removed?
- Could be worse if tracing succeeds, but produces misleading metrics due to

unknown changes
 Note that the capabilities are still there, and can be used by Oracle support

dtrace -n 'fbt::spa_sync:entry { printf("%Y", walltimestamp); }'
dtrace: invalid probe specifier fbt::spa_sync:entry { printf("%Y", walltimestamp); }:
probe description fbt::spa_sync:entry does not match any probes

Elsewhere at Oracle
 Their DTrace port for Oracle Linux won’t have this handicap

- although, the fbt provider hasn’t been included yet

Epilog: The New Systems Performance
 An era of:

- Open source
- Dynamic tracing
- Methodologies
- Distributed systems (cloud)

 Covered in my book, out this year:

Thank you!
 email: brendan@joyent.com
 twitter: @brendangregg
 blog: http://dtrace.org/blogs/brendan

mailto:brendan@joyent.com
mailto:brendan@joyent.com
http://dtrace.org/blogs/brendan
http://dtrace.org/blogs/brendan

