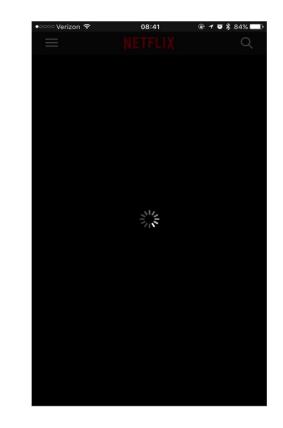
Netflix Performance Meetup

Global Client Performance Fast Metrics



3G in Kazakhstan

K24240BAD5

Making the Internet fast is slow.

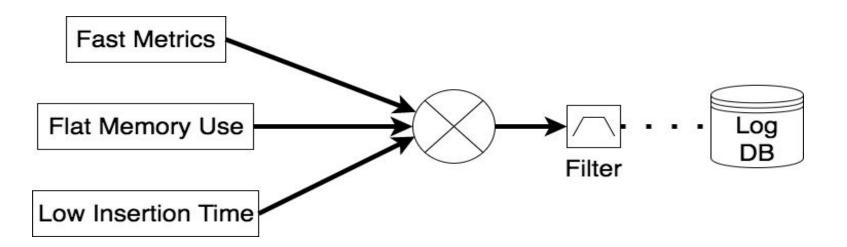
- Global Internet:
 - faster (better networking)
 - slower (broader reach, congestion)
- Don't wait for it, measure it and deal
- Working app > Feature rich app

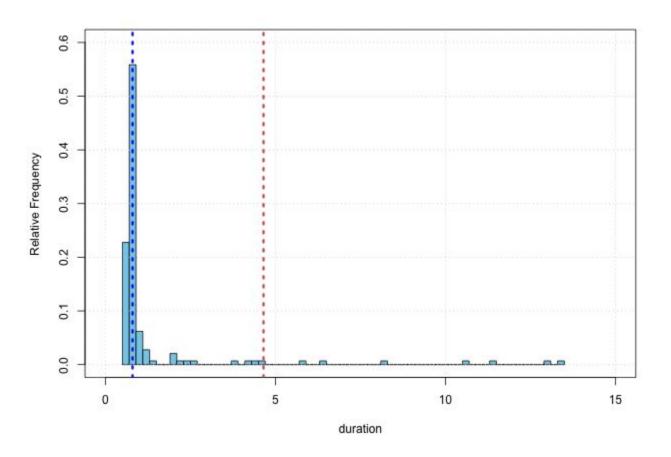
We need to know what the Internet looks like, without averages, seeing the full distribution.

Logging Anti-Patterns

- Averages
 - Can't see the distribution Ο
 - Outliers heavily distort Ο

- Sampling
 - Missed data Ο
 - Rare events Ο
- ∞ , 0, negatives, errors Problems aren't equal in Ο

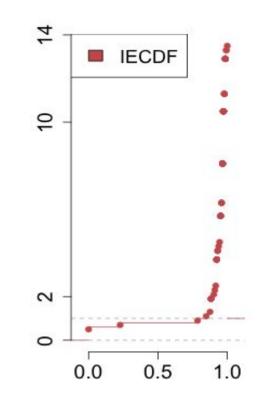

Population

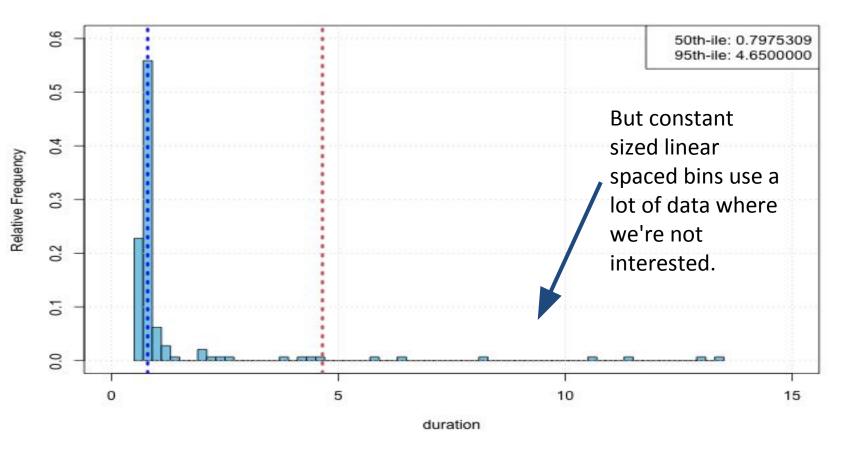

Instead, use the client as a map-reducer and send up aggregated data, less often.

Sizing up the Internet.

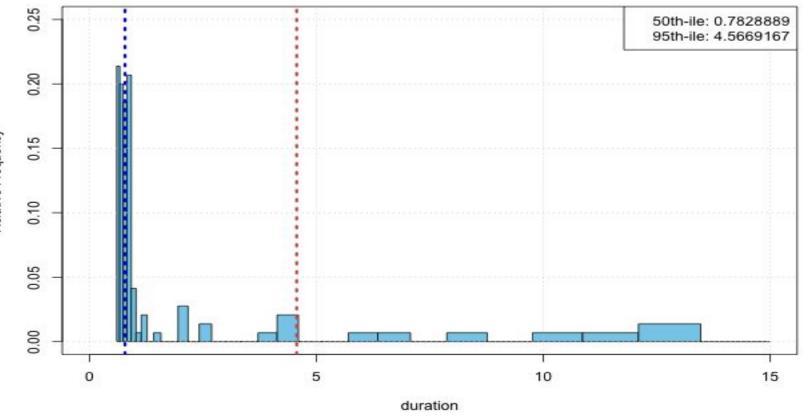
Infinite (free) compute power!

Get median, 95th, etc.


- Calculate the inverse empirical cumulative distribution function by math.
 - o ...or just use R which is free and knows how


to do it already

- > library(HistogramTools)
- > iecdf <- HistToEcdf(histogram,</pre>


method='linear', inverse=TRUE)

> iecdf(0.5)
[1] 0.7975309 # median
> iecdf(0.95)
[1] 4.65 # 95th percentile

Relative Frequency

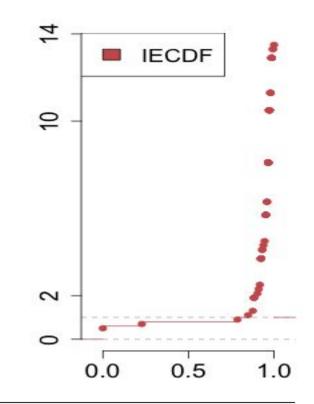
NETFLIX

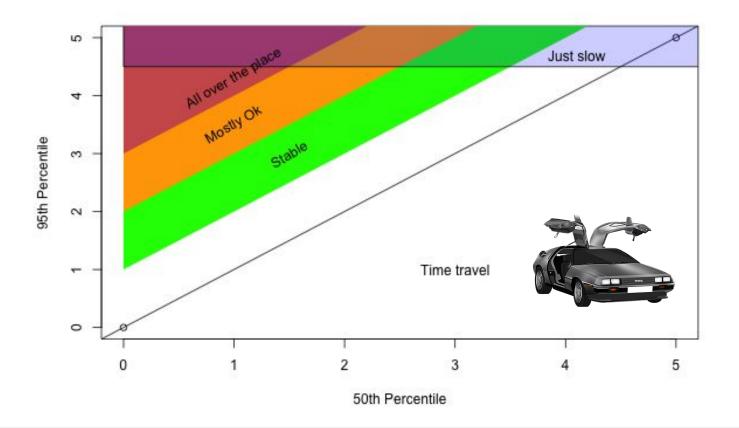
Data > Opinions.

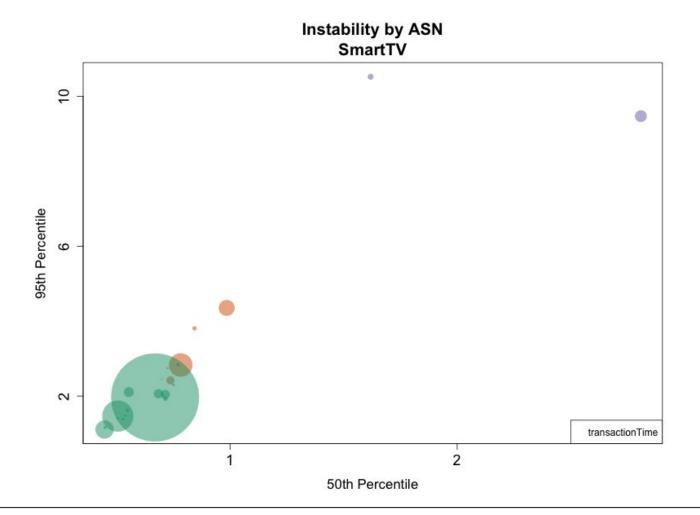
Architecture is hard. Make it cheap to experiment where your users really are.

We built Daedalus

	1.51%	1.72%	1.58%	1.77%	1.76%	1.75%	1.83%
Fast	3.21%	2.89%	2.80%	3.09%	3.18%	2.99%	2.89%
rast	4.58%	4.68%	4.62%	4:46%	4:42%	4.50%	4.36%
	8.98%	9.46%	8.44%	8.81%	8.76%	8.93%	8.77%
	9.70%	9.20%	9.65%	9.23%	9.15%	9.00%	9.13%
	11.90%	11.70%	11.83%	11.93%	11.85%	11.72%	11.96%
	12.53%	12.64%	12.56%	11.94%	12.40%	12.46%	12.22%
	10.03%	9.78%	9.54%	9.66%	10.24%	10.24%	9.80%
	6.57%	6.67%	6.61%	6.50%	6.75%	6.87%	6.85%
	4.40%	4.54%	4.71%	4.69%	4.49%	4.65%	4.68%
	3.43%	3.37%	3.37%	3.66%	3.68%	3.59%	3.63%
	2.67%	2.7 5%	2.83%	2.72%	2.65%	2.76%	2.79%
	2.1.6%	2.14%	2,29%	2.48%	2.17%	2.11%	1.90%
	2.04%	2.1.499	2.29%	2.02%	1.97%	1.94%	2.10%
	2.10%	2.3499	2.32%	2.29%	2.10%	2.22%	2.12%
	1.94%	1.92%	1,99%	1.89%	1.95%	1.81%	1.82%
	1.26%	1.30%	1.36%	1.33%	1.27%	1.36%	1.33%
	1.34%	1.23%	1.36%	1.35%	1.17%	1.36%	1.26%
	1.28%	1.20%	1.34%	1.40%	1.19%	1.30%	1.35%
	1.36%	1.50%	1.23%	1.58%	1.37%	1.40%	1.46%
	1.37%	1.44%	1.65%	1.48%	1.51%	1.33%	1.41%
	0.71%	0.76%	0.76%	0.79%	0.79%	0.81%	0.92%
	0.27%	0.20%	0.30%	0.30%	0.42%	0.33%	0.41%
	0.48%	0.45%	0.47%	0.47%	0.49%	0.41%	0.41%
	0.59%	0.44%	0.48%	0.48%	0.48%	0.46%	0.62%
	0.56%	0.73%	0.57%	0.48%	0.63%	0.70%	0.75%
	0.69%	0.46%	0.62%	0.64%	0.62%	0.56%	0.73%
	0.35%	0.37%	0.32%	0.29%	0.32%	0.37%	0.35%
	0.28%	0.28%	0.19%	0.49%	0.33%	0.31%	0.31%
	0.20%	0.21%	0.15%	0.21%	0.31%	0.30%	0.25%
	0.45%	0.50%	0.57%	0.57%	0.48%	0.43%	0.54%
	0.23%	0.23%	0.20%	0.24%	0.21%	0.20%	0.29%
	0.16%	0.14%	0.22%	0.31%	0.19%	0.15%	0.22%
4 5	0.09%	0.11%	0.10%	0.11%	0.19%	0.16%	0.09%
\sim	0.04%	0.07%	0.11%	0.06%	0.12%	0.14%	0.07%
~· ~	0.33%	0.30%	0.36%	0.19%	0.21%	0.24%	0.23%
Slow	0.13%	0.11%	0.10%	0.09%	0.10%	0.08%	0.11%
0.011	0.09%	0.04%	0.11%	0.04%	0.04%	0.07%	0.04%

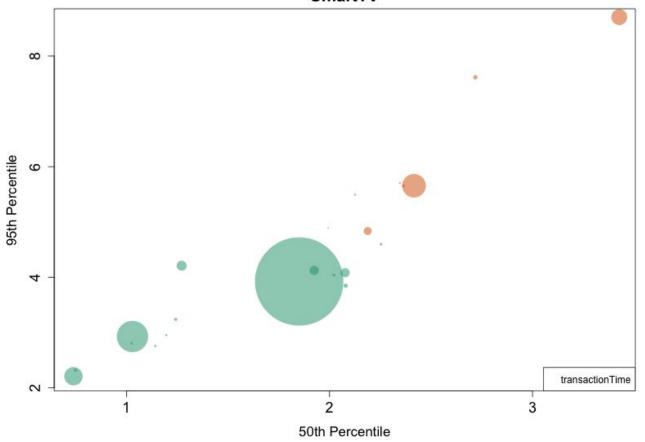

DNS Time
US
Elsewhere

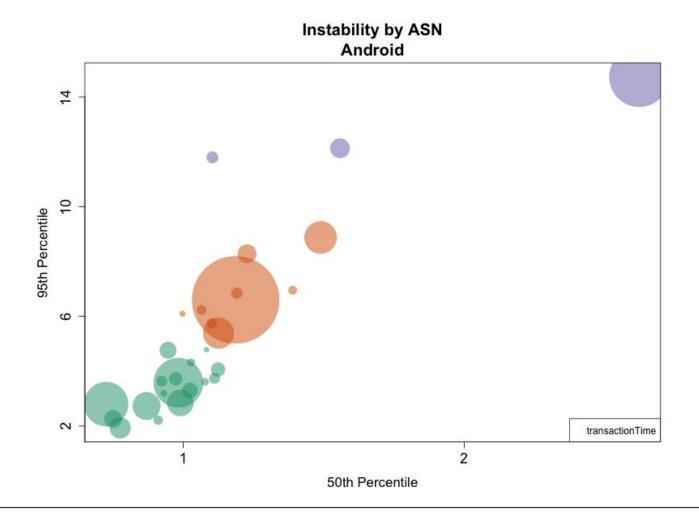

4	5	6	7	8	9	10
6.90%	1.35%	2.74%	3.61%	2.64%	5.07%	4.74%
3.45%	4.05%	1.83%	2.65%	5.36%	2.69%	2.77%
3.45%	5.41%	1.37%	8.1356	2.88%	3.62%	2.15%
0.00%	4.05%	2.74%	4.82%	3.84%	5.10%	4.47%
3.45%	2.70%	1.37%	3.86%	3.24%	214899	3.58%
0.00%	5.41%	10.96%	4.34%	4.80%	5.17%	5.19%
3.45%	1.35%	5.02%	4.82%	3.12%	3.72%	4.20%
10.34%	2.70%	7.31%	5.06%	5.04%	4.5 5%	6.26%
10.34%	14.86%	9.13%	6.51%	3.96%	3.62%	5,46%
10.34%	9.46%	12.79%	7.95%	5.64%	4.5 5%	5.72%
6.90%	6.76%	8.22%	8.67%	5.52%	6.41%	7.69%
0.00%	0.00%	8.68%	9.16%	7.31%	5.48%	6.71%
10.34%	5,41%	10.05%	8.43%	7.55%	8.38%	6.17%
0.00%	10.81%	5.94%	7.71%	6.71%	11.58%	6.26%
6.90%	0.00%	3.65%	2.65%	3.12%	5.58%	4.47%
0.00%	5.41%	2.74%	2.17%	3.96%	2.79%	2.95%
0.00%	10.81%	1.37%	0.24%	3.24%	1.55%	0.98%
3.45%	2.70%	0.00%	0.96%	4.08%	1.14%	0.36%
3.45%	1.35%	0.46%	0.96%	3.36%	215996	1.88%
0.00%	0.00%	0.00%	0.24%	3.24%	1.96%	2.68%
6.90%	0.00%	0.91%	0.48%	1.20%	5.41%	0.63%
0.00%	1.35%	0.91%	0.24%	0.48%	1.14%	1.43%
0.00%	0.00%	0.00%	0.48%	0.24%	1.34%	0.63%
6.90%	0.00%	0.91%	0.48%	1.32%	0.52%	0.72%
0.00%	1.35%	0.46%	0.24%	0.36%	0.62%	2.42%
0.00%	0.00%	0.46%	0.72%	1.80%	0.93%	2.50%
0.00%	1.35%	0.00%	2.65%	2.28%	1.24%	2.95%
0.00%	0.00%	0.00%	0.48%	0.72%	0.52%	0.54%
0.00%	0.00%	0.00%	0.24%	2.2.8%	0.62%	0.36%
0.00%	0.00%	0.00%	0.48%	1.08%	0.21%	0.27%
0.00%	0.00%	0.00%	4.82%	0.00%	1.96%	0.81%
0.00%	0.00%	0.00%	0.00%	1.08%	1.03%	1.52%
0.00%	0.00%	0.00%	0.24%	0.00%	0.10%	0.18%
0.00%	0.00%	0.00%	0.00%	0.24%	0.10%	0.09%
0.00%	0.00%	0.00%	0.24%	0.00%	0.10%	0.18%
3.45%	0.00%	0.00%	0.24%	0.12%	0.00%	0.00%
0.00%	0.00%	0.00%	0.00%	0.00%	0.10%	0.09%
0.00%	1.35%	0.00%	0.00%	0.24%	0.00%	0.00%


Interpret the data

 Visual → Numerical, need the IECDF for Percentiles

- $f(0.50) = 50^{\text{th}}$ (median)
- \circ f(0.95) = 95th
- Cluster to get pretty colors similar experiences.
 (k-means, hierarchical, etc.)





Instability by ASN SmartTV

Practical Teleportation.

- Go there!
- Abstract analysis hard
- Feeling reality is much simpler than looking at graphs. Build!

Make a Reality Lab.

Don't guess.

Developing a model based on production data, without missing the distribution of samples (network, render, responsiveness) will lead to **better software.**

Global reach doesn't need to be scary.

@gcirino42 http://blogofsomeguy.com

Martin Spier @spiermar

Performance Engineering @ Netflix

Problem & Motivation

- Real-user performance monitoring solution
- More insight into the App performance (as perceived by real users)
- Too many variables to trust synthetic tests and labs
- Prioritize work around App performance
- Track App improvement progress over time
- Detect issues, internal and external

Device Diversity

- Netflix runs on all sorts of devices
- Smart TVs, Gaming Consoles, Mobile Phones, Cable TV boxes, ...
- Consistently evaluate performance

What are we monitoring?

• User Actions

(or things users do in the App)

- App Startup
- User Navigation
- Playing a Title
- Internal App metrics

What are we measuring?

- When does the timer start and stop?
- Time-to-Interactive (TTI)
 - Interactive, even if
 some items were not fully
 loaded and rendered
- Time-to-Render (TTR)
 - Everything above the fold (visible without scrolling) is rendered
- Play Delay
- Meaningful for what we are monitoring

🖲 😑 🔹 Developer Tools - h	ttps://www.n	etflix.com/bro	owse				
🖟 🗍 Elements Console Sources Network Performance Memory Application	Security Au	dits AdBlock					:
🗧 🛇 🖿 🍸 View; 🏭 🛬 🗌 Preserve log 🗌 Disable cache 🗌 Offline No throttlir	na 🔻						
Filter Regex Hide data URLs A XHR JS CSS Img Media Font Doc	WS Manifes	t Other					
1000 ms 2000 ms 3000 ms 4000 ms 5000 ms	6000 ms	7000 ms	8000 ms	9000 ms	100	00 ms 11	000 ms 12
	1	4	-1.			-	
Name	Status	Туре	Initiator	Size	Time	Waterfall	10.00 🔺
browse	200	document	Other	62.2 KB	1.30 s		
topFrame.js	200	xhr	require-config.is:3	(from disk	1 ms		
Clipper.js	200	xhr	require-config.js:3	(from disk	6 ms	1	
ContentPreview.js	200	xhr	require-config.js:3	(from disk	5 ms		
Coordinator.js	200	xhr	require-config.is:3	(from disk	5 ms		
GlobalUtils.js	200	xhr	require-config.js:3	(from disk	5 ms		
Promotion.js	200	xhr	require-config.js:3	(from disk	4 ms		
CustomTooltipEligibility.js	200	xhr	require-config.js:3	(from disk	5 ms		
none	200	stylesheet	browse	72.0 KE	34 ms	1	
cadmium-playercore-5.0007.123.011-canary.js	200	script	browse	443 KB	79 ms	1	
checkSimSearch.js	200	xhr	require-config.js:3	(from disk	2 ms		
pageVisible.js	200	xhr	require-config.is:3	(from disk	2 ms		
PageInfo.js	200	xhr	require-config.js:3	(from disk	2 ms		
isTest.js	200	xhr	require-config.js:3	(from disk	3 ms		
PICON_024.png	200	png	browse	995 E	15 ms	1	
e82a466f2bcbab904e192eb63bdaec6950cf52fe.webp	200	webp	browse	80.6 KB	46 ms	1	
12004da9f7e4f6943d90269650bd3b2f63fc6fdf.webp	200	webp	browse	8.6 KB	16 ms	1	
none	200	script	browse	51.1 KB	20 ms	1	
common%7Cbootstrap.js,akira%7Ccommon.js	200	script	browse	445 KB	280 ms		
domReady.js	200	xhr	require-config.js:3	(from disk	7 ms		
nf-icon-v1-88.waff	200	font	browse	68.8 KB	30 ms	1	
4d5c91b459391de7bf81c5d3947593695a935536.webp	200	webp	browse	7.9 KB	15 ms	1	
6a55cb4870b3430286cb27a5326b01c6525a2893.jpg	200	jpeg	browse	14.7 KB	14 ms	1	
16dtc7ad1a7249e21ate1d30c45cb714985b8bab.webp	200	webp	browse	18.4 KB	18 ms	1	
536e263c3c409621794ee5e0e815d183f3bc1ba5.webp	200	webp	browse	16.3 KB	18 ms	1	
1698c88da53eedd5c755438d5916207c2fb79180.jpg	200	jpeg	browse	20.0 KE	19 ms		
391 requests 8.3 MB transferred Finish: 10.39 s DOMContentLoaded: 2.57 s Load: 5.68 s							

High-dimensional Data

- Complex device categorization
- Geo regions, subregions, countries
- Highly granular network classifications
- High volume of A/B tests
- Different facets of the same user action
 - Cold, suspended and backgrounded
 App startups
 - Target view/page on App startup

D druid

Data Sketches

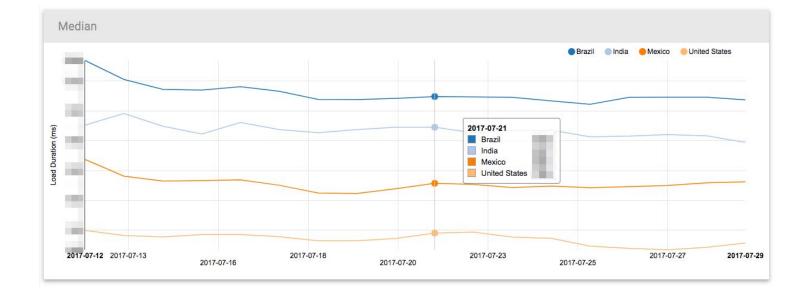
- Data structures that *approximately* resemble a much larger data set
- Preserve essential features!
- Significantly smaller!
- Faster to operate on!

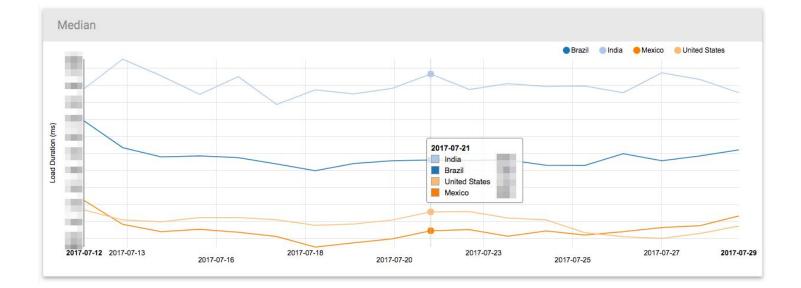
t-Digest

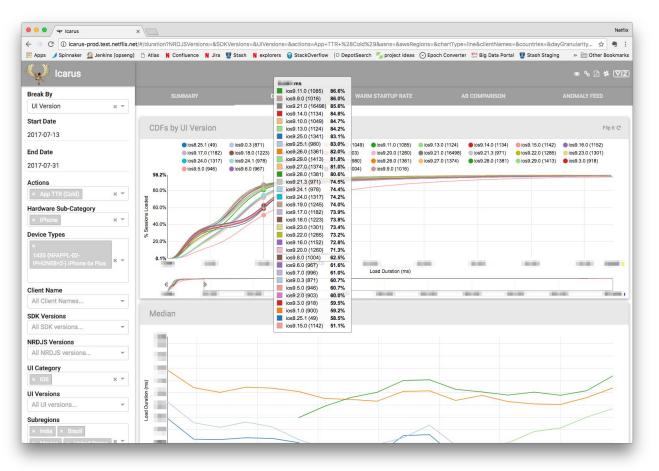
- t-Digest data structure
- Rank-based statistics (such as quantiles)
- Parallel friendly (can be merged!)
- Very fast!
- Really accurate!


• • • / O t-digest/histo.pdf at master - t >				Netfix
← → C GitHub, Inc. [US] https://g	thub.com/tdunning/t-digest/blob/master/docs/t-digest-paper/histo.pdf			\$ 9 E
🛗 Apps 🌙 Spinnaker 🚊 Jenkins (opseng)	🗅 Atlas 📕 Confluence 📕 Jira 😨 Stash 📕 explorers 🎯 StackOverflow (O De	potSearch 🛯 Sproject ideas 💿 Epoch Conve	erter Big Data Portal 🦉 Stash Staging	» 🛅 Other Bookmarks
	This repository Search Pull requests Issues	♠ +· ≌·		
	tdunning / t-digest	⊕ Watch + 50 ★ Uns	star 603 YFork 87	
	↔ Code ① Issues 16 ① Pull requests 4	Wiki Insights +		
	Branch: master + t-digest / docs / t-digest-paper / histo.pdf		Find file Copy path	
	Ttunning More article changes		43aa8bd on May 5	
	1 contributor			
	1.45 MB	Down	nload History 🖵 🏗	
	COMPUTING EXTREMELY ACCUR.	ATE QUANTILES USING		
	t-DIGESTS	•		
	TED DUNNING AND OTM	AR ERTL		
	ABSTRACT. Two variants of an on-line algorithm for			
	based statistics are presented that allow controllable of the distribution. Moreover, this new algorithm can			
	such as trimmed means in addition to computing arbit			
	of the method is that it allows a quantile q to be con max $(q, 1 - q)$ rather than with an absolute accuracy			
	algorithm is robust with respect to highly skewed dist	ibutions or highly ordered datasets		
	and allows separately computed summaries to be con An open-source Java implementation of this algo			
	Implementations in Go and Python are also available			

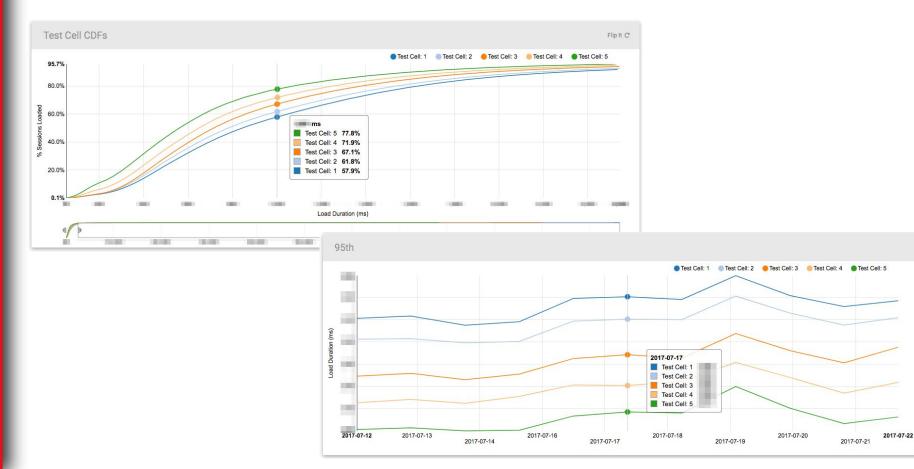
https://github.com/tdunning/t-digest




+ t-Digest sketches


iOS Median Comparison, Break by Country

iOS Median Comparison, Break by Country + iPhone 6S Plus

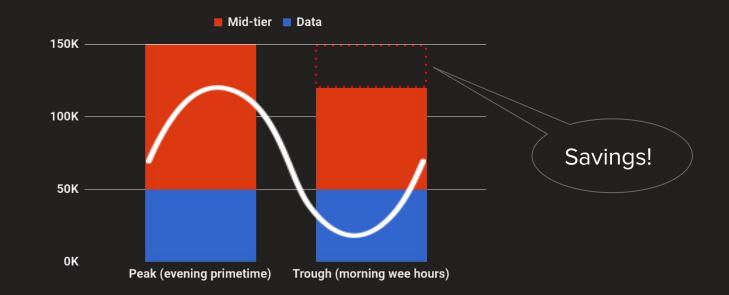

CDFs by UI Version

Warm Startup Rate

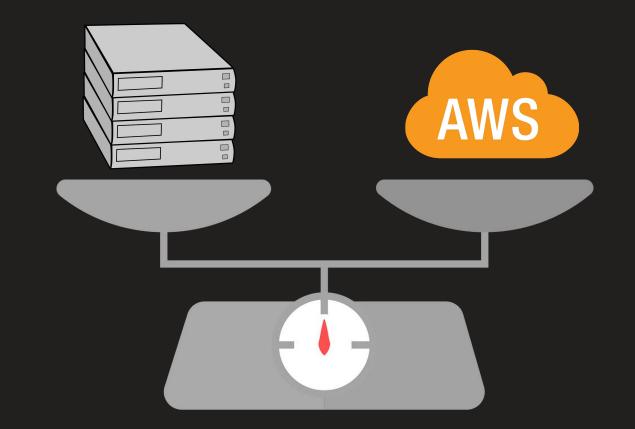
A/B Cell Comparison

Going Forward

- **Resource utilization metrics**
- Device profiling
 - Instrumenting client code
- Explore other visualizations
 - Frequency heat maps
- Connection between perceived performance, acquisition and retention



Netflix Autoscaling for experts



- Mid-tier stateless services are ~2/3rd of the total
- Savings 30% of mid-tier footprint (roughly 30K instances)
 - Higher savings if we break it down by region
 - Even higher savings on services that scale well

Why we autoscale - philosophical reasons

Why we autoscale - pragmatic reasons

- Encoding
- Precompute
- Failover
- Red/black pushes
- Curing cancer**
- And more...

** Hack-day project

Should you autoscale?

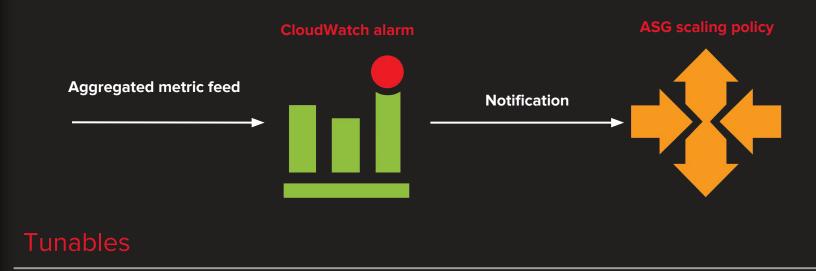
Benefits

- On-demand capacity: direct \$\$ savings
- RI capacity: re-purposing spare capacity

However, for each server group, beware of

- Uneven distribution of traffic
- Sticky traffic
- Bursty traffic
- Small ASG sizes (<10)

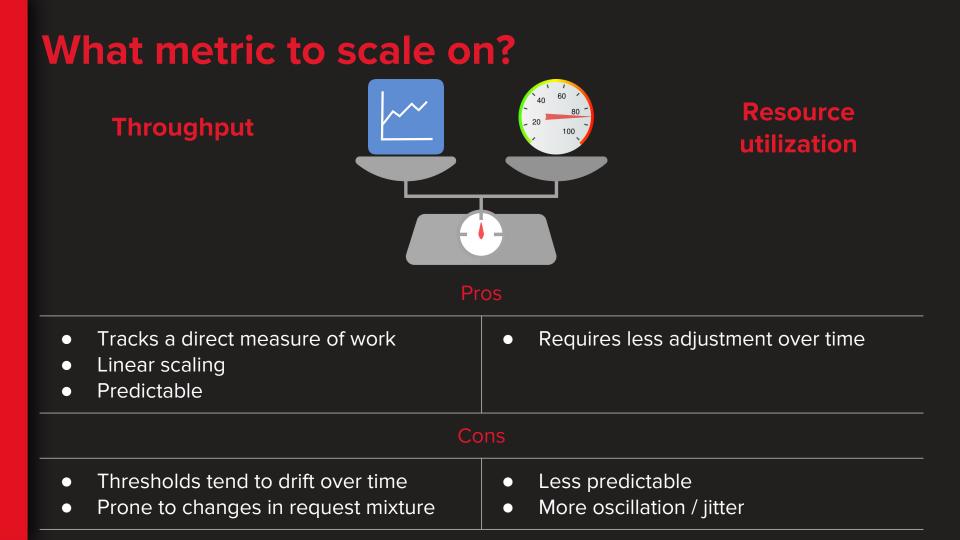
Autoscaling impacts availability - true or false?



* If done correctly

Under-provisioning, however, can impact availability

- Autoscaling is not a problem
- The real problem is not knowing performance characteristics of the service


AWS autoscaling mechanics

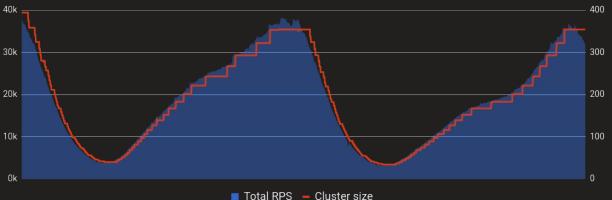
Metric

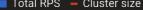
- Threshold
- *#* of eval periods

- Scaling amount
- Warmup time

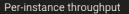
Autoscaling on multiple metrics

Proceed with caution


- Harder to reason about scaling behavior
- Different metrics might contradict each other, causing oscillation


Typical Netflix configuration:

- Scale-up policy on throughput
- Scale-down policy on throughput
- Emergency scale-up policy on CPU, aka "the hammer rule"

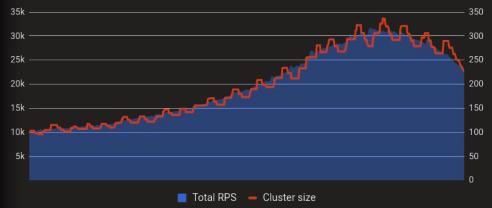

Well-behaved autoscaling

Common mistakes - "no rush" scaling

Cluster throughput vs footprint

Problem: scaling amounts too small, cooldown too long **Effect:** scaling lags behind the traffic flow. Not enough capacity at peak, capacity wasted in trough **Remedy:** increase scaling amounts, migrate to step policies

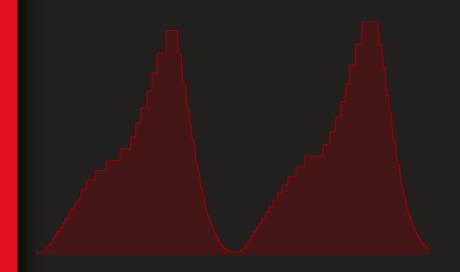
Common mistakes - twitchy scaling

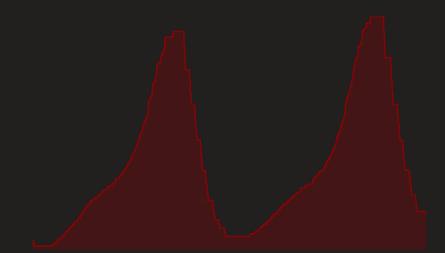

Cluster throughput vs footprint

Problem: Scale-up policy is too aggressive Effect: unnecessary capacity churn Remedy: reduce scale-up amount, increase the # of eval periods

Common mistakes - should I stay or should I go

Cluster throughput vs footprint

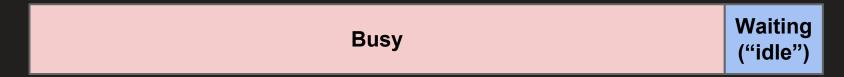

Per-instance throughput



Problem: -up and -down thresholds are too close to each other Effect: constant capacity oscillation Remedy: move -up and -down thresholds farther apart

AWS target tracking - your best bet!

- Think of it as a step policy with auto-steps
- You can also think of it as a thermostat
- Accounts for the rate of change in monitored metric
- Pick a metric, set the target value and warmup time that's it!



Netflix PMCs on the Cloud

90% CPU utilization:

90% CPU utilization:

perf stat -a -- sleep 10

Performance counter stats for 'system wide':

80018.188438	task-clock (msec)	#
7,562	context-switches	#
1,157	cpu-migrations	#
109,734	page-faults	#
<not supported=""></not>	cycles	
<not supported=""></not>	stalled-cycles-fron	tend
<not supported=""></not>	stalled-cycles-back	end
<not supported=""></not>	instructions	
<not supported=""></not>	branches	
<not supported=""></not>	branch-misses	

8.000	CPUs utilized	(100.00%)
0.095	K/sec	(100.00%)
0.014	K/sec	(100.00%)
Q QQ1	M/sec	

10.001715965 seconds time elapsed

Performance Monitoring Counters (PMCs) in most clouds

perf stat -a -- sleep 10

Performance counter stats for 'system wide':

641320.173626	task-clock (msec)	#	64.122	CPUs utilized	[100.00%]
1,047,222	context-switches	#	0.002	M/sec	[100.00%]
83,420	cpu-migrations	#	0.130	K/sec	[100.00%
38,905	page-faults	#	0.061	K/sec	
655,419,788,755	cycles	#	1.022	GHz	[75.02%]
<not supported=""></not>	stalled-cycles-frontend				
<not supported=""></not>	<pre>stalled-cycles-backend</pre>				
536,830,399,277	instructions	#	0.82	insns per cycle	[75.02%]
97,103,651,128	branches	#	151.412	M/sec	[75.02%]
1,230,478,597	branch-misses	#	1.27%	of all branches	[74.99%]

10.001622154 seconds time elapsed

AWS EC2 m4.16xl

Interpreting IPC & Actionable Items

IPC: Instructions Per Cycle (invert of CPI)

- IPC < 1.0: likely memory stalled
 - Data usage and layout to improve CPU caching, memory locality.
 - Choose larger CPU caches, faster memory busses and interconnects.
- IPC > 1.0: likely instruction bound
 - Reduce code execution, eliminate unnecessary work, cache operations, improve algorithm order. Can analyze using CPU flame graphs.
 - Faster CPUs.

Intel Architectural PMCs

Event Name	Umask	Event S.	Example Event Mask Mnemonic
UnHalted Core Cycles	00H	3CH	CPU_CLK_UNHALTED.THREAD_P
Instruction Retired	00H	C0H	INST_RETIRED.ANY_P
UnHalted Reference Cycles	01H	3CH	CPU_CLK_THREAD_UNHALTED.REF_XCLK
LLC Reference	4FH	2EH	LONGEST_LAT_CACHE.REFERENCE
LLC Misses	41H	2EH	LONGEST_LAT_CACHE.MISS
Branch Instruction Retired	00H	C4H	BR_INST_RETIRED.ALL_BRANCHES
Branch Misses Retired	00H	C5H	BR_MISP_RETIRED.ALL_BRANCHES

Now available in AWS EC2 on full dedicated hosts (eg, m4.16xl, ...)

# pmcarch 1						
CYCLES	INSTRUCTIONS	IPC BR_RETIRED	BR_MISPRED	BMR% LLCREF	LLCMISS	LLC%
90755342002	64236243785	0.71 11760496978	174052359	1.48 1542464817	360223840	76.65
75815614312	59253317973	0.78 10665897008	158100874	1.48 1361315177	286800304	78.93
65164313496	53307631673	0.82 9538082731	137444723	1.44 1272163733	268851404	78.87
90820303023	70649824946	0.78 12672090735	181324730	1.43 1685112288	343977678	79.59
76341787799	50830491037	0.67 10542795714	143936677	1.37 1204703117	279162683	76.83
[]						

https://github.com/brendangregg/pmc-cloud-tools

tiptop Tasks:		tal,	3 dis	[root] played					screen 0: default
PID [%CPU]	%SYS	Р	Mcycle	Minstr	IPC	%MISS	%BMIS	%BUS COMMAND
3897	35.3	28.5	4	274.06	178.23	0.65	0.06	0.00	0.0 java
1319+	5.5	2.6	6	87.32	125.55	1.44	0.34	0.26	0.0 nm-applet
900	0.9	0.0	6	25.91	55.55	2.14	0.12	0.21	0.0 dbus-daemo

Netflix Performance Meetup

Netflix Performance Meetup