
eBPF and Pefrormance
What, Why, How, and What's Next

Brendan Gregg

2eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Statement from the heart

I’d like to begin by acknowledging the Traditional Owners of this land and pay my
respects to Elders past and present.

3eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

This Keynote is about Performance Engineering

Australia typically does:

● Load Testing
● Performance Monitoring

...but not:

● Performance Engineering

There are many companies with significant performance engineering teams, including:

Intel, AMD, Nvidia, Meta, Google, X (Twitter), Amazon,
Netflix, eBay, Salesforce, Pinterest, etc.

Buy product, run product
Capacity planning
Basic SW/HW evaluations

Root-cause analysis (incl. runtimes, kernel, metal)
Custom perf tool development
Perf feature/fix development (incl. open source)
Vendor design collaboration (incl. pre-silicon)

4eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

1) What: A type of software

2) Why: Case Study

3) How: History, Internals, Usage, Recommendations

4) What's Next: Challenges, Future

5) Discussion & Q&A

Agenda

(This section is my type-of-software summary; Daniel Borkmann went deeper in parts for SIGCOMM 2023)

5eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Kernel

Applications

System Calls

Hardware

50 Years, one (dominant) OS model

6eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Kernel

Applications

System Calls

Hardware

...requiring workarounds for high performance

DPDK library

7eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Hardware

Supervisor

Applications

Ring 1

Privilege
Ring 0

Ring 2

...

Origins: Multics,
1960s

8eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Kernel

User-mode
Applications

System Calls

Hardware

Modern day: A new OS model

Kernel-mode
Applications (BPF)

BPF Helper Calls

9eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Kernel

User-mode
Applications

Hardware Events (incl. clock)

A different execution model

Kernel-mode
Applications (BPF)

Scheduler

Tasks

Kernel
Events

U.E.

10eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

IPU/DPU

Kernel

User-mode
Applications

System Calls

Hardware

Future: A new take on "edge computing"

"hot path"
Accelerators

(BPF)

"slow path"

Kernel-mode
Applications

(BPF)

BPF Helper Calls

11eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

A New Type of Software

Execution
model

User
defined

Compil-
ation

Security Failure
mode

Resource
access

User task yes any user based abort syscall, fault

Kernel task no static none (code
reviews)

panic direct

BPF event yes JIT,
CO-RE

verified, JIT error
message

restricted
helpers, kfuncs

Updated by Daniel Borkmann, SIGCOMM 2023

12eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Smaller
Kernel

User-mode
Applications

Hardware

Modern Linux is becoming Microkernel-ish

Kernel-mode
Services & Drivers

BPF BPF BPF

The word “microkernel” has already been invoked by Jonathan Corbet, Thomas Graf, Greg Kroah-Hartman, ...

13eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

50 Years, one process state model

SwappingKernel

User

Runnable

Wait

Block

Sleep

Idle

schedule

resource I/O

acquire lock

sleep

wait for work

Off-CPU

On-CPU

wakeup

acquired

wakeup

work arrives

preemption or time quantum expired

swap out

swap in

Linux groups
most sleep states

14eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

BPF program state model

Loaded

Enabled

event fires

program ended

Off-CPU On-CPU

BPF

attach

Kernel

helpers / kfuncs

Spinning

spin lock

Sleeping

preempt,
fault

(restricted state)

page fault

15eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

1) What: A type of software

2) Why: Case Study

3) How: History, Internals, Usage, Recommendations

4) What's Next: Challenges, Future

5) Discussion & Q&A

Agenda

16eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Example BPF perf tool: biolatency

./biolatency -mT 1 5
Tracing block device I/O... Hit Ctrl-C to end.

06:20:16
 msecs : count distribution
 0 -> 1 : 36 |**************************************|
 2 -> 3 : 1 |* |
 4 -> 7 : 3 |*** |
 8 -> 15 : 17 |***************** |
 16 -> 31 : 33 |********************************** |
 32 -> 63 : 7 |******* |
 64 -> 127 : 6 |****** |

06:20:17
 msecs : count distribution
 0 -> 1 : 96 |************************************ |
 2 -> 3 : 25 |********* |
 4 -> 7 : 29 |*********** |
[...]

What is the distribution of disk I/O latency? Per second?

17eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Why biolatency is efficient

Kernel

awk

perf Block I/Operf_
events Tracepoints

Kernel

Block I/O
BPF Tracepointsp.e.

BPF map

biolatency

all raw events

"count" summary

User-space

Old:

New:

CPU consuming

Lightweight. Practical.
Production safe.

18eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Real-time custom histograms now practical

19eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Two ways to return data to user-space

20eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

New tools more practical: Filling in blind spots
Whatever you can imagine!

21eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

1) What: A type of software

2) Why: Case Study

3) How: History, Internals, Usage

4) What's Next: Challenges, Future

5) Discussion & Q&A

Agenda

(This history section focuses on "tracing": performance analysis using eBPF)

22eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

eBPF, The Early Years
(2014-2017)

https://www.youtube.com/watch?v=Wb_vD3XZYOA

https://www.youtube.com/watch?v=Wb_vD3XZYOA

23eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

BPF 1992: Berkeley Packet Filter

A limited
virtual machine for

efficient packet filters

tcpdump -d host 127.0.0.1 and port 80
(000) ldh [12]
(001) jeq #0x800 jt 2 jf 18
(002) ld [26]
(003) jeq #0x7f000001 jt 6 jf 4
(004) ld [30]
(005) jeq #0x7f000001 jt 6 jf 18
(006) ldb [23]
(007) jeq #0x84 jt 10 jf 8
(008) jeq #0x6 jt 10 jf 9
(009) jeq #0x11 jt 10 jf 18
(010) ldh [20]
(011) jset #0x1fff jt 18 jf 12
(012) ldxb 4*([14]&0xf)
(013) ldh [x + 14]
(014) jeq #0x50 jt 17 jf 15
(015) ldh [x + 16]
(016) jeq #0x50 jt 17 jf 18
(017) ret #262144
(018) ret #0

24eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

eBPF 2014+
Kernel

kprobes

uprobes

tracepoints

sockets

SDN Configuration

User-Defined BPF Programs

…

Event TargetsRuntime

perf_events
BPF

actions

BPF
runtime

verifier
DDoS Mitigation

Intrusion Detection

Container Security

Observability/APM

Firewalls

Device Drivers

BPF JIT

25eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

 BPF (kernel engineers)

 eBPF (marketing)

BPF is no longer an acronym

Modern logo

Called eBPF at first, then:

26eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Source: https://www.cs.umd.edu/users/hollings/papers/shpcc94.pdf

1994: Origin of Dynamic Instrumentation / Tracing

27eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

<2014: Linux Tracing was a mess (with cute ponies)

The tracing ponies were created by a marketing professional from Sun Microsystems, Deirdre Straughan, now my wife

28eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

eBPF 2015: First perf/tracing tool use case
./bitehist
Tracing block device I/O... Interval 5 secs. Ctrl-C to end.

 kbytes : count distribution
 0 -> 1 : 3 | |
 2 -> 3 : 0 | |
 4 -> 7 : 3395 |************************************* |
 8 -> 15 : 1 | |
 16 -> 31 : 2 | |
 32 -> 63 : 738 |******* |
 64 -> 127 : 3 | |
 128 -> 255 : 1 | |

https://www.brendangregg.com/blog/2015-05-15/ebpf-one-small-step.html

Dynamic instrumentation of block I/O
functions, custom timing, and
custom in-kernel histograms.

29eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

2015-2016+: New BPF-based tracers

bpftracebcc

30eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

2015-2016: More event sources

Instrument anything,
safely, in production.

I started calling eBPF
"superpowers."

31eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

2016: New perf tools using bcc
I'd done this a few times before,

Linux was my 4th kernel:

32eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

DockerCon 2017: BPF goes big
Meanwhile, I would sometimes hit instruction limits needing workarounds

33eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Netconf 2018
Alexei Starvoitov

34eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

2018-2019: bpftrace brings ease of use
#!/usr/local/bin/bpftrace

BEGIN
{
 printf("Tracing block device I/O... Hit Ctrl-C to end.\n");
}

tracepoint:block:block_bio_queue
{
 @start[args.sector] = nsecs;
}

tracepoint:block:block_rq_complete,
tracepoint:block:block_bio_complete
/@start[args.sector]/
{
 @usecs = hist((nsecs - @start[args.sector]) / 1000);
 delete(@start[args.sector]);
}

END
{
 clear(@start);
}

ply was and is another good
emerging option

https://github.com/bpftrace/bpftrace/
blob/master/tools/biolatency.bt

35eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Kernel Recipes 2019, Alexei Starovoitov
~40 active BPF programs on every Facebook server

36eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

UbuntuMasters 2019, Brendan Gregg
~14 active BPF programs on every Netflix cloud instance

37eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

2019: BPF Perf Tools book, lots more tools

Many only possible thanks to
dynamic instrumentation

39eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

2021: eBPF Foundation

https://ebpf.foundation/

40eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Alexei Starovoitov (Meta)*
Daniel Borkmann (Isovalent/Cisco)*
Alan Jowett (Microsoft)
Andrii Nakryiko (Google)
Brendan Gregg (Intel)
KP Singh (Google)
Joe Stringer (Isovalent/Cisco)

* Linux eBPF Maintaners

2021+: BPF Technical Steering Committee (BSC)

Perhaps the most crucial role of the BSC is to negotiate bytecode changes between implementations (Linux, Windows).
However, so far there have been no bytecode disagreements, and I'm not expecting any.

41eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

2021
Microsoft reveals they have been working on it

https://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows/

42eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

2021-2023: Powering new research and innovation

https://conferences.sigcomm.org/sigcomm/2023/workshop-ebpf.html

...

43eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

2024: IETF standard draft

https://datatracker.ietf.org/doc/draft-ietf-bpf-isa/

Network Working Group D. Thaler, Ed.
Internet-Draft 27 May 2024
Intended status: Standards Track
Expires: 28 November 2024

 BPF Instruction Set Architecture (ISA)
 draft-ietf-bpf-isa-03

Abstract

 eBPF (which is no longer an acronym for anything), also commonly
 referred to as BPF, is a technology with origins in the Linux kernel
 that can run untrusted programs in a privileged context such as an
 operating system kernel. This document specifies the BPF instruction
 set architecture (ISA).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Driven by Dave
Thaler (Microsoft)
while he was on
the BSC.
Thanks, Dave!

KeynoteeBPF Day India 2024

2024: Major Projects Include

Source: https://ebpf.io/applications/Source: https://ebpf.io/infrastructure/

45eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

2024+: More innovation

https://conferences.sigcomm.org/sigcomm/2024/workshop/ebpf/

...

46eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

2015: I knew of every company, person, and significant development.

2024: eBPF is too big. I don't even know all the companies.

2024 Reality

47eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

1) What: A type of software

2) Why: Case Study

3) How: History, Internals, Usage

4) What's Next: Challenges, Future

5) Discussion & Q&A

Agenda

48eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Some updated highlights for my tracing internals talk

https://www.brendangregg.com/blog/2021-06-15/bpf-internals.html

(Dan used a couple of these slides for SIGCOMM 2023)

49eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

eBPF

Extended BPF (eBPF) modernized BPF

Maintainers/creators: Alexei Starovoitov & Daniel Borkmann

Old BPF is now “Classic BPF,” and eBPF is usually just “BPF”

Classic BPF Extended BPF

Word size 32-bit 64-bit

Registers 2 10+1

Storage 16 slots 512 byte stack + infinite map
storage

Events packets many event sources

50eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

BPF Internals

11
Registers

Map Storage (Mbytes)

Machine Code
Execution

BPF
Helpers

JIT Compiler

BPF Instructions

Rest of
Kernel

Events

BPF
Context

Verifier

Interpreter

51eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

52eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

bpftrace program transformations

ASTbpftrace
program

LLVM IR BPF machine
code

53eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Extended BPF instruction (bytecode) format

opcode
dest
reg

src
reg

signed
offset

signed
immediate constant

8-bit 4-bit 4-bit 16-bit 32-bit

← 64-bit →

opcode src
inst.
class

4-bit 1-bit 3-bit

E.g., for
ALU & JMP
classes:

54eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Extended BPF instruction (bytecode) format (2)

opcode
dest
reg

src
reg

signed
offset

signed
immediate constant

8-bit 4-bit 4-bit 16-bit 32-bit

opcode src
inst.
class

4-bit 1-bit 3-bit

E.g., for
ALU & JMP
classes:

E.g., call get_current_pid_tgid

14

BPF_CALL BPF_JMP

55eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Extended BPF instruction (bytecode) format (3)

opcode
dest
reg

src
reg

signed
offset

signed
immediate constant

8-bit 4-bit 4-bit 16-bit 32-bit

opcode src
inst.
class

4-bit 1-bit 3-bit

E.g., for
ALU & JMP
classes:

E.g., call get_current_pid_tgid

14

BPF_CALL BPF_JMP #define BPF_JMP 0x05

#define BPF_CALL 0x80

Linux include/uapi/linux/bpf.h

Linux include/uapi/linux/bpf_common.h

56eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Extended BPF instruction (bytecode) format (4)

opcode
dest
reg

src
reg

signed
offset

signed
immediate constant

8-bit 4-bit 4-bit 16-bit 32-bit

opcode src
inst.
class

4-bit 1-bit 3-bit

E.g., for
ALU & JMP
classes:

E.g., call get_current_pid_tgid

0xe0 0x00 0x00 0x00

BPF_CALL BPF_JMP #define BPF_JMP 0x05

#define BPF_CALL 0x80

Linux include/uapi/linux/bpf.h

Linux include/uapi/linux/bpf_common.h

0x85 0x0 0x0 0x00 0x00

57eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Extended BPF instruction (bytecode) format (5)
E.g., call get_current_pid_tgid

(hex) 85 00 00 e0 00 00 00

As per the BPF specification
(as defined in the Linux headers; now becoming the IETF standard)

58eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

LLVM/Clang has a BPF target

LLVMIR

--target bpf

BPF
bytecode

Future: bpftrace may include its own lightweight
bpftrace compiler (BC) as an option
(pros: no dependencies; cons: less optimal code)

59eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

LLVM/Clang has a BPF target (2)

LLVMLLVM
IR

BPF
bytecode

LLVM
BPF target

Linux include/uapi/linux/bpf_common.h

Linux include/uapi/linux/bpf.h

Linux include/uapi/linux/filter.h

BPF
specification
(#defines)

60eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

LLVM llvm/lib/Target/BPF/BPFInstrInfo.td
class CALL<string OpcodeStr>
 : TYPE_ALU_JMP<BPF_CALL.Value, BPF_K.Value,
 (outs),
 (ins calltarget:$BrDst),
 !strconcat(OpcodeStr, " $BrDst"),
 []> {
 bits<32> BrDst;

 let Inst{31-0} = BrDst;
 let BPFClass = BPF_JMP;
}

Plus more llvm boilerplate & BPF headers shown earlier

E.g., tail call i64 inttoptr (i64 14 to i64 ()*)()

14

85 00 00 e0 00 00 00

LLVM IR BPF→

61eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

 bf 16 00 00 00 00 00 00
 b7 01 00 00 00 00 00 00
 7b 1a f0 ff 00 00 00 00
 85 00 00 00 0e 00 00 00
 77 00 00 00 20 00 00 00
 7b 0a f8 ff 00 00 00 00
 18 17 00 00 30 00 00 00 00 00 00 00 00 00 00 00
 85 00 00 00 08 00 00 00
 bf a4 00 00 00 00 00 00
 07 04 00 00 f0 ff ff ff
 bf 61 00 00 00 00 00 00
 bf 72 00 00 00 00 00 00
 bf 03 00 00 00 00 00 00
 b7 05 00 00 10 00 00 00
 85 00 00 00 19 00 00 00
 b7 00 00 00 00 00 00 00
 95 00 00 00 00 00 00 00

Now you have BPF bytecode!

62eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

 bf 16 00 00 00 00 00 00
 b7 01 00 00 00 00 00 00
 7b 1a f0 ff 00 00 00 00
 85 00 00 00 0e 00 00 00
 77 00 00 00 20 00 00 00
 7b 0a f8 ff 00 00 00 00
 18 17 00 00 30 00 00 00 00 00 00 00 00 00 00 00
 85 00 00 00 08 00 00 00
 bf a4 00 00 00 00 00 00
 07 04 00 00 f0 ff ff ff
 bf 61 00 00 00 00 00 00
 bf 72 00 00 00 00 00 00
 bf 03 00 00 00 00 00 00
 b7 05 00 00 10 00 00 00
 85 00 00 00 19 00 00 00
 b7 00 00 00 00 00 00 00
 95 00 00 00 00 00 00 00

Now you have BPF bytecode! (2)

14 (BPF_FUNC_get_current_pid_tgid)

0x05 (BPF_JMP) | 0x80 (BPF_CALL)

63eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

BPF mid-level internals

From: BPF Performance Tools, Figure 2-3

64eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

 85 00 00 00 12 34 56 78

Verifying BPF instructions

If ...

static int do_check(struct bpf_verifier_env *env)
[...]
 } else if (class == BPF_JMP || class == BPF_JMP32) {
 u8 opcode = BPF_OP(insn->code);
 env->jmps_processed++;
 if (opcode == BPF_CALL) {
[...]
 err = check_helper_call(env, insn->imm, env->insn_idx);
[...]
static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
{
 const struct bpf_func_proto *fn = NULL;
 struct bpf_reg_state *regs;
 struct bpf_call_arg_meta meta;
 bool changes_data;
 int i, err;

 /* find function prototype */
 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
 func_id);
 return -EINVAL;

Linux kernel/bpf/verifier.c

>20000 lines of code

Imagine we call a bogus function...

65eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

>20000 lines of code

>400 error returns

Checks every instruction

Checks every code path

Rewrites some bytecode

BPF verifier

check_helper_mem_access
check_func_arg
check_map_func_compatibility
check_func_proto
check_func_call
check_reference_leak
check_helper_call
check_alu_op
check_cond_jmp_op
check_ld_imm
check_ld_abs
check_return_code
check_cfg
check_btf_func
check_btf_line
check_btf_info
check_map_prealloc
check_map_prog_compatibility
check_struct_ops_btf_id
check_attach_modify_return
check_attach_btf_id

Verifier functions:
check_subprogs
check_reg_arg
check_stack_write
check_stack_read
check_stack_access
check_map_access_type
check_mem_region_access
check_map_access
check_packet_access
check_ctx_access
check_flow_keys_access
check_sock_access
check_pkt_ptr_alignment
check_generic_ptr_alignment
check_ptr_alignment
check_max_stack_depth
check_tp_buffer_access
check_ptr_to_btf_access
check_mem_access
check_xadd
check_stack_boundary

66eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

● Memory access
– Direct access extremely restricted

– Can only read initialized memory

– Other kernel memory must pass through
the bpf_probe_read() helper and its checks

● Arguments are the correct type
● Register usage allowed

– E.g., no frame pointer writes

● No write overflows
● No addr leaks
● Etc.

Verifying Instructions

STACK

CTX

SOCKET

MAP_VALUE
LOAD

STORE

Memory

bpf_probe_read

random addr

67eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Verifying Code Paths

● All instruction must lead to exit
● No unreachable instructions
● No backwards branches (loops)

except BPF bounded loops

biolatency as GraphViz dot:

68eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Verifying Code Paths

● All instruction must lead to exit
● No unreachable instructions
● No backwards branches (loops)

except BPF bounded loops

biolatency as GraphViz dot:

69eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

 bf 16 00 00 00 00 00 00
 b7 01 00 00 00 00 00 00
 7b 1a f0 ff 00 00 00 00
 85 00 00 00 0e 00 00 00
 77 00 00 00 20 00 00 00
 7b 0a f8 ff 00 00 00 00
 18 17 00 00 30 00 00 00 00 00 00 00 00 00 00 00
 85 00 00 00 08 00 00 00
 bf a4 00 00 00 00 00 00
 07 04 00 00 f0 ff ff ff
 bf 61 00 00 00 00 00 00
 bf 72 00 00 00 00 00 00
 bf 03 00 00 00 00 00 00
 b7 05 00 00 10 00 00 00
 85 00 00 00 19 00 00 00
 b7 00 00 00 00 00 00 00
 95 00 00 00 00 00 00 00

Pre-verifier BPF bytecode

70eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

 bf 16 00 00 00 00 00 00
 b7 01 00 00 00 00 00 00
 7b 1a f0 ff 00 00 00 00
 85 00 00 00 d0 81 01 00
 77 00 00 00 20 00 00 00
 7b 0a f8 ff 00 00 00 00
 18 17 00 00 18 00 00 00 00 00 00 00 00 00 00 00
 85 00 00 00 f0 80 01 00
 bf a4 00 00 00 00 00 00
 07 04 00 00 f0 ff ff ff
 bf 61 00 00 00 00 00 00
 bf 72 00 00 00 00 00 00
 bf 03 00 00 00 00 00 00
 b7 05 00 00 10 00 00 00
 85 00 00 00 30 2c ff ff
 b7 00 00 00 00 00 00 00
 95 00 00 00 00 00 00 00

Post-verifier BPF bytecode

71eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

 bf 16 00 00 00 00 00 00
 b7 01 00 00 00 00 00 00
 7b 1a f0 ff 00 00 00 00
 85 00 00 00 d0 81 01 00
 77 00 00 00 20 00 00 00
 7b 0a f8 ff 00 00 00 00
 18 17 00 00 18 00 00 00 00 00 00 00 00 00 00 00
 85 00 00 00 f0 80 01 00
 bf a4 00 00 00 00 00 00
 07 04 00 00 f0 ff ff ff
 bf 61 00 00 00 00 00 00
 bf 72 00 00 00 00 00 00
 bf 03 00 00 00 00 00 00
 b7 05 00 00 10 00 00 00
 85 00 00 00 30 2c ff ff
 b7 00 00 00 00 00 00 00
 95 00 00 00 00 00 00 00

Post-verifier BPF bytecode (2)

E.g., call get_current_pid_tgid
helper index value has become an instruction
offset addresses from __bpf_call_base

72eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

BPF Internals: More Information

● https://www.brendangregg.com/blog/2021-06-15/bpf-internals.html
● Linux include/uapi/linux/bpf_common.h
● Linux include/uapi/linux/bpf.h
● Linux include/uapi/linux/filter.h
● https://docs.cilium.io/en/v1.15/bpf/
● https://ebpf.io/what-is-ebpf
● https://lwn.net/Kernel/Index/#BPF
● https://events.static.linuxfound.org/sites/events/files/slides/

bpf_collabsummit_2015feb20.pdf
● https://kernel-recipes.org/en/2022/talks/the-untold-story-of-bpf/
● BPF Performance Tools, Addison-Wesley 2020, chapter 2

73eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

BPF Recent Additions (2019-2024)

● BTF: BPF Type Format
● CO-RE: Compile Once Run Everywhere
● Bounded loops
● Multi-event-attach (faster init)
● Somewhat faster uprobes (but not fast yet)
● kfunc: lighter-weight kprobes
● sched_ext: Kernel CPU scheduler hooks
● Work on signed BPF

...absent from docs/programs/talks that were written prior to their existence

74eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

BTF & CO-RE

BTF: BPF Type Format

CO-RE: Compile Once Run Everywhere

Allowing small stand-alone ELF/BPF binaries

75eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

1) What: A type of software

2) Why: Case Study

3) How: History, Internals, Usage, Recommendations

4) What's Next: Challenges, Future

5) Discussion & Q&A

Agenda

76eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Major BPF Performance Tools

bpftracebcc

BPF Compiler Collection
100 performance tools
C programming

BPF Tracer
~40 basic tools
Scripting
Note: complies to the same bytecode as bcc,
so is just as fast. Easier to write.

https://github.com/iovisor/bcc/ https://github.com/bpftrace/bpftrace

77eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Ubuntu Install (2024)

apt install bpfcc-tools

apt install bpftrace

For older Ubuntu:

BCC (BPF Compiler Collection): complex tools

bpftrace: custom tools (Ubuntu 19.04+)

These are default installs at Netflix, Meta, etc.

Ubuntu 24.04 Includes the bcc and bpftrace tools by default

78eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Some Tool Examples

*.bt: bpftrace, incl. some book tools[0]

*.py: BCC Python, obsolete interface

*[no ext]: BCC C libbpf-tools

(some tools exist for all three)

[0] https://github.com/brendangregg/bpf-perf-tools-book

https://github.com/brendangregg/bpf-perf-tools-book

79eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

CPUs: execsnoop

execsnoop -T
TIME(s) PCOMM PID PPID RET ARGS
0.506 run 8745 1828 0 ./run
0.507 bash 8745 1828 0 /bin/bash
0.511 svstat 8747 8746 0 /command/svstat /service/nflx-httpd
0.511 perl 8748 8746 0 /usr/bin/perl -e $l=<>;$l=~/(\d+) sec/;pr...
0.514 ps 8750 8749 0 /bin/ps --ppid 1 -o pid,cmd,args
0.514 grep 8751 8749 0 /bin/grep org.apache.catalina
0.514 sed 8752 8749 0 /bin/sed s/^ *//;
0.515 xargs 8754 8749 0 /usr/bin/xargs
0.515 cut 8753 8749 0 /usr/bin/cut -d -f 1
0.523 echo 8755 8754 0 /bin/echo
0.524 mkdir 8756 8745 0 /bin/mkdir -v -p /data/tomcat
[...]
1.528 run 8785 1828 0 ./run
1.529 bash 8785 1828 0 /bin/bash
1.533 svstat 8787 8786 0 /command/svstat /service/nflx-httpd
1.533 perl 8788 8786 0 /usr/bin/perl -e $l=<>;$l=~/(\d+) sec/;pr...
[...]

New process trace

80eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

CPUs: runqlat

runqlat 10 1
Tracing run queue latency... Hit Ctrl-C to end.

 usecs : count distribution
 0 -> 1 : 1906 |*** |
 2 -> 3 : 22087 |**|
 4 -> 7 : 21245 |************************************** |
 8 -> 15 : 7333 |************* |
 16 -> 31 : 4902 |******** |
 32 -> 63 : 6002 |********** |
 64 -> 127 : 7370 |************* |
 128 -> 255 : 13001 |*********************** |
 256 -> 511 : 4823 |******** |
 512 -> 1023 : 1519 |** |
 1024 -> 2047 : 3682 |****** |
 2048 -> 4095 : 3170 |***** |
 4096 -> 8191 : 5759 |********** |
 8192 -> 16383 : 14549 |************************** |
 16384 -> 32767 : 5589 |********** |

Scheduler latency (run queue latency)

81eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Disks: biolatency

biolatency -mT 1 5
Tracing block device I/O... Hit Ctrl-C to end.

06:20:16
 msecs : count distribution
 0 -> 1 : 36 |**************************************|
 2 -> 3 : 1 |* |
 4 -> 7 : 3 |*** |
 8 -> 15 : 17 |***************** |
 16 -> 31 : 33 |********************************** |
 32 -> 63 : 7 |******* |
 64 -> 127 : 6 |****** |

06:20:17
 msecs : count distribution
 0 -> 1 : 96 |************************************ |
 2 -> 3 : 25 |********* |
[...]

Disk I/O latency histograms, per second

82eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

File Systems: xfsslower

xfsslower.py 50
Tracing XFS operations slower than 50 ms
TIME COMM PID T BYTES OFF_KB LAT(ms) FILENAME
21:20:46 java 112789 R 8012 13925 60.16 file.out
21:20:47 java 112789 R 3571 4268 136.60 file.out
21:20:49 java 112789 R 5152 1780 63.88 file.out
21:20:52 java 112789 R 5214 12434 108.47 file.out
21:20:52 java 112789 R 7465 19379 58.09 file.out
21:20:54 java 112789 R 5326 12311 89.14 file.out
21:20:55 java 112789 R 4336 3051 67.89 file.out
[...]
22:02:39 java 112789 R 65536 1486748 182.10 shuffle_6_646_0.data
22:02:39 java 112789 R 65536 872492 30.10 shuffle_6_646_0.data
22:02:39 java 112789 R 65536 1113896 309.52 shuffle_6_646_0.data
22:02:39 java 112789 R 65536 1481020 400.31 shuffle_6_646_0.data
22:02:39 java 112789 R 65536 1415232 324.92 shuffle_6_646_0.data
22:02:39 java 112789 R 65536 1147912 119.37 shuffle_6_646_0.data
[...]

XFS I/O slower than a threshold (variants for ext4, btrfs, zfs)

83eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Networking: tcplife

tcplife
PID COMM LADDR LPORT RADDR RPORT TX_KB RX_KB MS
22597 recordProg 127.0.0.1 46644 127.0.0.1 28527 0 0 0.23
3277 redis-serv 127.0.0.1 28527 127.0.0.1 46644 0 0 0.28
22598 curl 100.66.3.172 61620 52.205.89.26 80 0 1 91.79
22604 curl 100.66.3.172 44400 52.204.43.121 80 0 1 121.38
22624 recordProg 127.0.0.1 46648 127.0.0.1 28527 0 0 0.22
3277 redis-serv 127.0.0.1 28527 127.0.0.1 46648 0 0 0.27
22647 recordProg 127.0.0.1 46650 127.0.0.1 28527 0 0 0.21
3277 redis-serv 127.0.0.1 28527 127.0.0.1 46650 0 0 0.26
[...]

TCP session lifespans with connection details

84eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Networking: tcpsynbl (book)

tcpsynbl.bt
Attaching 4 probes...
Tracing SYN backlog size. Ctrl-C to end.
^C
@backlog[backlog limit]: histogram of backlog size

@backlog[128]:
[0] 2 |@@|

@backlog[500]:
[0] 2783 |@@|
[1] 9 | |
[2, 4) 4 | |
[4, 8) 1 | |

TCP SYN backlogs as histograms

85eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Applications: mysqld_qslower

mysqld_qslower.py $(pgrep mysqld)
Tracing MySQL server queries for PID 9908 slower than 1 ms...
TIME(s) PID MS QUERY
0.000000 9962 169.032 SELECT * FROM words WHERE word REGEXP '^bre.*n$'
1.962227 9962 205.787 SELECT * FROM words WHERE word REGEXP '^bpf.tools$'
9.043242 9962 95.276 SELECT COUNT(*) FROM words
23.723025 9962 186.680 SELECT count(*) AS count FROM words WHERE word REGEXP
'^bre.*n$'
30.343233 9962 181.494 SELECT * FROM words WHERE word REGEXP '^bre.*n$' ORDER
BY word
[...]

MySQL queries slower than a threshold

86eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Kernel: workq (book)

workq.bt
Attaching 4 probes...
Tracing workqueue request latencies. Ctrl-C to end.
^C
@us[blk_mq_timeout_work]:
[1] 1 |@@ |
[2, 4) 11 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[4, 8) 18 |@@|

@us[xfs_end_io]:
[1] 2 |@@@@@@@@ |
[2, 4) 6 |@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[4, 8) 6 |@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[8, 16) 12 |@@|
[16, 32) 12 |@@|
[32, 64) 3 |@@@@@@@@@@@@@ |

[...]

Work queue function execution times

87eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Containers: blkthrot (book)

blkthrot.bt
Attaching 3 probes...
Tracing block I/O throttles by cgroup. Ctrl-C to end
^C

@notthrottled[1]: 506

@throttled[1]: 31

Count block I/O throttles by blk cgroup

bpftrace

bpftrace -e 'kr:vfs_read /retval > 0/ { @ = hist(retval); }'

https://github.com/bpftrace/bpftrace

Probe Action
Filter

(optional)

Ad-hoc tools and one-liners:

89eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

bpftrace: Probe Type Shortcuts

https://github.com/bpftrace/bpftrace/blob/master/man/adoc/bpftrace.adoc#probes

90eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

bpftrace: Functions
hist(n) Log2 histogram

lhist(n, min, max, step) Linear hist.

count() Count events

sum(n) Sum value

min(n) Minimum value

max(n) Maximum value

avg(n) Average value

stats(n) Statistics

str(s) String

ksym(p) Resolve kernel addr

usym(p) Resolve user addr

kaddr(n) Resolve kernel symbol

uaddr(n) Resolve user symbol

printf(fmt, ...) Print formatted

print(@x[, top[, div]]) Print map

delete(@x) Delete map element

clear(@x) Delete all keys/values

reg(n) Register lookup

join(a) Join string array

time(fmt) Print formatted time

system(fmt) Run shell command

cat(file) Print file contents

exit() Quit bpftrace

91eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

bpftrace: Variable Types

Basic Variables
– @global

– @thread_local[tid]

– $scratch

Associative Arrays
– @array[key] = value

Buitins
– Integers: pid, tid, uid, cgroup, cpu, nsecs, arg0..N, retval, ...

– Strings: comm, func, probe

– Stacks: kstack, ustack

– Structs: args, curtask

92eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

bpftrace: Handy one-liners

Linux 4.9+, https://github.com/bpftrace/bpftrace

Files opened by process
bpftrace -e 't:syscalls:sys_enter_open { printf("%s %s\n", comm,
 str(args->filename)) }'

Read size distribution by process
bpftrace -e 't:syscalls:sys_exit_read { @[comm] = hist(args->ret) }'

Count VFS calls
bpftrace -e 'kprobe:vfs_* { @[func]++ }'

Show vfs_read latency as a histogram
bpftrace -e 'k:vfs_read { @[tid] = nsecs }
 kr:vfs_read /@[tid]/ { @ns = hist(nsecs - @[tid]); delete(@tid) }’

Trace user-level function
bpftrace -e 'uretprobe:bash:readline { printf(“%s\n”, str(retval)) }’
...

93eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

readahead.bt
Attaching 5 probes...
^C
Readahead unused pages: 128
Readahead used page age (ms):
@age_ms:
[1] 2455 |@@@@@@@@@@@@@@@ |
[2, 4) 8424 |@@|
[4, 8) 4417 |@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[8, 16) 7680 |@@@ |
[16, 32) 4352 |@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[32, 64) 0 | |
[64, 128) 0 | |
[128, 256) 384 |@@ |

bpftrace tool: File system readahead

94eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

#!/usr/local/bin/bpftrace

#include <linux/mm_types.h>

kprobe:__do_page_cache_readahead { @in_readahead[tid] = 1; }
kretprobe:__do_page_cache_readahead { @in_readahead[tid] = 0; }

kretprobe:__page_cache_alloc
/@in_readahead[tid]/
{
 @birth[retval] = nsecs;
 @rapages++;
}

kprobe:mark_page_accessed
/@birth[arg0]/
{
 @age_ms = hist((nsecs - @birth[arg0]) / 1000000);
 delete(@birth[arg0]);
 @rapages--;
}

END
{
 printf("\nReadahead unused pages: %d\n", @rapages);
 printf("\nReadahead used page age (ms):\n");
 print(@age_ms); clear(@age_ms);
 clear(@birth); clear(@in_readahead); clear(@rapages);
}

Source:
https://www.brendangregg.com/Slides/
LSFMM2019_BPF_Observability.pdf

95eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Flame Graphs
Visualizes a collection of stack traces

– x-axis: population: e.g., alphabetical sort to maximize merging

– y-axis: stack depth
– color: random (default) or a dimension

Over 80+ Implementations
– https://github.com/brendangregg/FlameGraph: Original, uses Perl + SVG + JavaScript
– https://github.com/spiermar/d3-flame-graph: By my Netflix colleague Martin Spier
– Linux perf now includes them: perf script flamegraph

References:
– http://www.brendangregg.com/flamegraphs.html
– http://queue.acm.org/detail.cfm?id=2927301
– "The Flame Graph" CACM, June 2016
– https://www.brendangregg.com/Slides/YOW2022_flame_graphs/

96eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Original (2011):

Flame Graph Instructions

git clone https://github.com/brendangregg/FlameGraph; cd FlameGraph
perf record -F 49 -ag -- sleep 30
perf script | ./stackcollapse-perf.pl | ./flamegraph.pl > out.svg

profile -af -F 49 30 | ./flamegraph.pl > out.svg

eBPF:

Some runtimes (e.g., JVM) require extra steps for stacks & symbols
see https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

https://github.com/brendangregg/FlameGraph

97eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

BPF-based CPU Flame Graphs (2017)

perf record

perf script

stackcollapse-perf.pl

flamegraph.pl

perf.data

flamegraph.pl

profile

Linux 4.9Linux 2.6

In-kernel
stack aggregation

(BPF)

98eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

1) What: A type of software

2) Why: Case Study

3) How: History, Internals, Usage, Recommendations

4) What's Next: Challenges, Future

5) Discussion & Q&A

Agenda

99eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Recommended tracing front-ends

New, lightweight,
CO-RE & BTF based

Requires LLVM;
now obsolete / special-use only

I want to run some tools
● bcc, bpftrace

I want to hack up some new tools
● bpftrace

I want to spend weeks developing a BPF product
● bcc libbpf C, bcc Python (avoid), gobpf, libbpf-rs

100eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Recommended tracing front-ends

I want to run some tools
● bcc, bpftrace /usr/bin/*

I want to hack up some new tools
● bpftrace bash, awk

I want to spend weeks developing a BPF product
● bcc libbpf C, bcc Python (avoid), gobpf, libbpf-rs C, C++, Rust

 Unix analogies

Requires LLVM;
now obsolete / special-use only

New, lightweight,
CO-RE & BTF based

101eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Developing a new performance tool

1) Research the topic landscape
2) Create a known workload
3) Do one thing and do it well
4) Preference: tracepoints kfunc kprobe→ →
5) Crosscheck measured numbers
6) Measure tool overhead
7) <80 chars wide by default
8) Add CLI options: follow other tool style
9) Concise, intuitive, self-explanatory output

From: https://github.com/iovisor/bcc/blob/master/
CONTRIBUTING-SCRIPTS.md

102eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Publishing a new performance tool

1) Publish to your own open source repo!

2) Publish to the community repo:
● bpftrace: https://github.com/bpftrace/user-tools

● bcc: <we haven't done it yet>

3) Promote in a blog post / conference

4) Gather feedback, iterate

5) Gather/share case studies

6) At this point the bcc/bpftrace maintainers may consider it for inclusion

We're trying to avoid having too many tools

103eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

1) What: A type of software

2) Why: Case Study

3) How: History, Internals, Usage, Recommendations

4) What's Next: Challenges, Future

5) Discussion & Q&A

Agenda

Too many tools

105eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Challenges

Too many perf tools

BPF is hard

bcc tools are old
● They were designed in 2015 prior to tracepoint support and other features

uprobes are slow

Symbols and stacks

Signed or trusted BPF

Workloads are moving to GPU/AI accelerators

Performance is a moving target

106

Computers are getting increasingly complex

Just one example (computer hardware) of increasing complexity.
Software is worse!

Performance issues can now go unsolved for weeks, months, years
Product decisions miss improvements as analysis and tuning takes too long

107eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

1) What: A type of software

2) Why: Case Study

3) How: History, Internals, Usage, Recommendations

4) What's Next: Challenges, Future

5) Discussion & Q&A

Agenda

108

"Fast by Friday":

Any computer performance issue

reported on Monday

should be solved by Friday

(or sooner)

A vision:

109eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Future

Fast by Friday

Off-CPU Flame Graphs (adoption, given frame pointers now in distros)

Zero-Instrumentation APM

Fast uprobes

Custom kernel algorithms (scheduling, networking, memory)

eBPF accelerators (including HW offload)

Prior weeks: Preparation

Monday: Quantify, static tuning, load
Tuesday: Checklists, elimination
Wednesday: Profiling
Thursday: Latency, logs, critical path
Friday: Efficiency, algorithms

Post weeks: Case study, retrospective

"Fast by Friday": Proposed Agenda

110

111eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Prior weeks: Preparation

Monday: Quantify, static tuning, load eBPF:
Tuesday: Checklists, elimination → Exoneration tools

Wednesday: Profiling → CPU & off-CPU profiling

Thursday: Latency, logs, critical path → Latency drill downs

Friday: Efficiency, algorithms

Post weeks: Case study, retrospective

"Fast by Friday": Proposed Agenda

The following are the eBPF excerpts from a full talk:
https://www.brendangregg.com/Slides/KernelRecipes2023_FastByFriday/

Prior weeks: Preparation

Everything must work on Monday!
❏ Critical analysis tools ("crisis tools") must be

preinstalled; E.g., Linux: procps, sysstat, linux-
tools-common, bcc-tools, bpftrace, …

❏ Stack tracing and symbols should work for the kernel,
libraries, and applications

❏ Tracing (host & distributed) must work
❏ The performance engineers must already have host

SSH root access
❏ A functional diagram of the system must be known
❏ Source code should be available

Example functional diagram
Source: Lunar Module - LM10 Through LM14 Familiarization Manual" (1969):

Current industry status: 1 out of 5

112

Monday: Quantify, static tuning, load

1) Quantify the problem
● Problem statement method

2) Static performance tuning
● The system without load
● Check all hardware, software
● Versions, past errors, config
● Covered in sysperf

3) Load vs implementation
● Just a problem of load?
● Usually solved via basic monitoring and line

charts

Current industry status: 4 out of 5

Problem Statement method
Source: Systems Performance 2nd edition, page 44

A familiar pattern of load
Source: https://www.brendangregg.com/Slides/SREcon_2016_perf_checklists

113

114eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Tuesday: Checklists, Elimination

Current eBPF tools
*snoop, *top, *stat, *count, *slower, *dist

Supports later methodologies
Workload characterization, latency analysis, off-CPU analysis,
USE method, etc.

Future elimination tools
*health, *diagnosis

Supports "fast by friday"

Analyzes existing dynamic workload

Open source & in the target code repo
 (same as tests)

Current eBPF performance tools
Source: BPF Performance Tools, cover art [Gregg 2019]

115eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Wednesday: Profiling

1) CPU Flame Graphs
● More efficient with eBPF
● eBPF runtime stack walkers

2) Off-CPU Flame Graphs
● Impractical without eBPF

Solves most performance issues
Needs prep! (stack walking and symbols)

CPU flame graph

Off-CPU/waker time flame graph

116eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Thursday: Latency, logs, critical path

1) Latency drilldowns
● Latency histograms
● Latency heat maps
● Latency outliers
● Drill down to origin of latency

2) Logs, event tracing
● Custom event logs

3) Critical path analysis
● Multi-threaded tracing
● Distributed tracing across a distributed environment

Distributed tracing
Source:
https://www.brendangregg.com/Slides/Monitorama2015_NetflixInstanceAnalysis

Latency heat maps
Source: https://www.brendangregg.com/HeatMaps/latency.html

117eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Thursday: Latency, logs, critical path

1) Latency drilldowns
● Latency histograms
● Latency heat maps
● Latency outliers
● Drill down to origin of latency

2) Logs, event tracing
● Custom event logs

3) Critical path analysis
● Multi-threaded tracing
● Distributed tracing across a distributed environment

Distributed tracing
Source:
https://www.brendangregg.com/Slides/Monitorama2015_NetflixInstanceAnalysis

Latency heat maps
Source: https://www.brendangregg.com/HeatMaps/latency.html

eBPF Tools

*dist

*slower

*snoop, bpftrace

"Zero instrumentation"
(when faster uprobes is done)

Friday: Efficiency, algorithms

1) Is the target efficient?
● A largely unsolved problem
● Cycles/carbon per request
● Compare with similar products
● New efficiency tools (eBPF?)
● System efficiency equals the

least efficient component
● Modeling, theory

1) Use faster algorithms?
● Big O Notation

Current industry status: 1 out of 5 Source: Systems Performance 2nd Edition, page 175

Protocol CIFS iSCSI FTP NFSv3 NFSv4

Cycles(k) per 1k
read

2241 1843 970 395 485

Example efficiency comparisons (made up)

118

Any computer performance issue reported on Monday should be solved by Friday (or sooner)

Prior weeks: Preparation
Monday: Quantify, static tuning, load eBPF:
Tuesday: Checklists, elimination → Exoneration tools

Wednesday: Profiling → CPU & off-CPU profiling

Thursday: Latency, logs, critical path → Latency drill downs

Friday: Efficiency, algorithms
Post weeks: Case study, retrospective

"Fast by Friday": Summary

119

More details: https://www.brendangregg.com/Slides/KernelRecipes2023_FastByFriday/

120eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Off-CPU Analysis

The study of blocking states

Overhead often prohibitive
Needs eBPF

121eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Off-CPU Time Flame Graph

http://www.brendangregg.com/blog/2016-02-01/linux-wakeup-offwake-profiling.html

Stack depth
Off-CPU time

122eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Off-CPU Time (zoomed): tar(1)

file read
from disk

directory read
from disk

Only showing kernel stacks in this example

pipe write
path read from disk

fstat from disk

123eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

CPU + Off-CPU Flame Graphs: See Everything

CPU

Off-CPU

124eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

eBPF Flame Graph Futures

Practical off-CPU flame graphs
● Much easier now that frame pointers are default in Ubuntu, Fedora, etc. (2024)

Other types: disk, network, malloc, etc.
Custom stack walking

● Frame pointers not needed: SFrames, shadow stacks
● Include other app context

125eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Zero-instrumentation APM

Installation:
1) Install the agent

2) Done! (no code changes required)

Uses uprobes to instrument HTTP/SSL calls

Multiple startups will be selling this

Possible headline: "OpenTelemetry more stable and faster"
● This gives uprobes/eBPF a bad name, unfairly, as none of us in uprobe/eBPF land recommend this use case until

the speed/stability issues are fixed

Fast uprobes available in Linux in 2024 2025?

(Application Performance Monitoring)

126eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Custom Kernel Algorithms (for performance)

TCP congestion controls already done via STRUCT_OPS, also see →
"TCP's Third Eye" paper (https://schmiste.github.io/ebpf23.pdf, SIGCOMM 2023)

CPU & container schedulers already done: sched_ext→
● On most generic systems I don't forsee huge utilization wins; we will see tail-latency wins, and some

wins for complex scheduling needs (Beowulf clusters; P/E-core?; Contaniers/cgroups).

FS readahead policies

127eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

eBPF Accelerators

https://github.com/Orange-OpenSource/bmc-cache

First proof of concept:

128eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Other Future Predictions

More device drivers, incl. USB on BPF (ghk)

Performance monitoring agents

Intrusion detection systems already seeing adoption→

Runtimes come with eBPF accelerators
– java -XX:+eBPF

New Windows eBPF things we haven't thought of yet

129eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

What would you like to imagine?

There's a good chance it can be built using eBPF and used in production today.

Measure first (observability/tracing) to prove and quantify a problem, then build/offer the
solution armed with expected speedups based on your measurements.

130eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

1) What: A type of software

2) Why: Case Study

3) How: History, Internals, Usage, Recommendations

4) What's Next: Challenges, Future

5) Discussion & Q&A

Agenda

131eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Discussion and Q&A

132eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

eBPF References/URLs

● https://ebpf.io

● https://github.com/iovisor/bcc
● https://github.com/bpftrace/bpftrace

● https://www.brendangregg.com/ebpf.html

● https://lwn.net/Kernel/Index/#BPF

● https://docs.cilium.io/en/v1.15/bpf/
● https://ebpf.io/what-is-ebpf

● Documentary: https://www.youtube.com/watch?v=Wb_vD3XZYOA

● Intel iwl tracing demo: https://www.youtube.com/watch?v=16slh29iN1g
● http://www.brendangregg.com/flamegraphs.html

● https://www.brendangregg.com/Slides/KernelRecipes2023_FastByFriday/

133eBPF and Performance: What, Why, How, and What's Next (Brendan Gregg)ACM SIGCOMM 2024

Thanks
BPF: Alexei Starovoitov (Meta), Daniel Borkmann (Isovalent/Cisco), David S. Miller (Red Hat), Jakub Kicinski (Meta),
Yonghong Song (Meta), Martin KaFai Lau (Meta), John Fastabend (Isovalent), Quentin Monnet (Isovalent), Jesper
Dangaard Brouer (Isovalent), Andrey Ignatov (Meta), Stanislav Fomichev (Google), Linus Torvalds, and many more in
the BPF community

BCC: Brenden Blanco (VMware), Yonghong Song, Sasha Goldsthein (Google), Teng Qin (Meta), Paul Chaignon
(Isovalent), Vicent Martí (PlanetScale), Dave Marchevsky (Meta), Hengqi Chen (Tencent), and many more in the BCC
community

bpftrace: Alastair Robertson (Meta), Dan Xu (Meta), Bas Smit, Mary Marchini (Netflix), Masanori Misono, Jiri Olsa,
Viktor Malík, Dale Hamel, Willian Gaspar, Augusto Mecking Caringi, and many more in the bpftrace community

Canonical Ubuntu: BPF support, frame pointers by default, bcc and bpftrace by default

brendan@intel.com

All photos my own; except slide 32 (DockerCon), 35 (KernelRecipes) and 36 (UbuntuMasters)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide53
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Flame Graph Summary
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide13
	Slide 107
	Slide5
	Slide 109
	Slide17
	Slide54
	Slide18
	Slide20
	Slide24
	Slide29
	Slide32
	Slide 117
	Slide34
	Slide56
	Off-CPU Analysis
	Off-CPU Time Flame Graph
	Off-CPU Time (zoomed): tar(1)
	CPU + Off-CPU Flame Graphs: See Everything
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133

