
Visualizing Performance with Flame Graphs

Brendan Gregg
Senior Performance Architect

Jul 2017

2017 USENIX Annual Technical Conference

Visualize	CPU	-me	consumed	by	
all	so5ware	

Kernel	

Java	

User-level	

Agenda	

1.	CPU	Flame	graphs	

2.	Fixing	Stacks	&	Symbols	 3.	Advanced	flame	graphs	

Take	aways	

1.  Interpret	CPU	flame	graphs	

2.  Understand	piHalls	with	stack	traces	and	symbols	

3.  Discover	opportuniKes	for	future	development	

	

Case	Study	

Exception handling consuming CPU

CPU	PROFILING	
Summary	

CPU	Profiling	

A
B

block interrupt

on-CPU off-CPU

A
B
A A

B
A

syscall

time

•  Record stacks at a timed interval: simple and effective
–  Pros: Low (deterministic) overhead
–  Cons: Coarse accuracy, but usually sufficient

stack
samples: A

Stack	Traces	

•  A	code	path	snapshot.	e.g.,	from	jstack(1):	

$ jstack 1819

[…]

"main" prio=10 tid=0x00007ff304009000 nid=0x7361

runnable [0x00007ff30d4f9000]

 java.lang.Thread.State: RUNNABLE

at Func_abc.func_c(Func_abc.java:6)

at Func_abc.func_b(Func_abc.java:16)

at Func_abc.func_a(Func_abc.java:23)

at Func_abc.main(Func_abc.java:27)

running
parent
g.parent
g.g.parent

System	Profilers	
•  Linux	

–  perf_events	(aka	"perf")	

•  Oracle	Solaris	
–  DTrace	

•  OS	X	
–  Instruments	

•  Windows	
–  XPerf,	WPA	(which	now	has	flame	graphs!)	

•  And	many	others…	

Linux	perf_events	
•  Standard	Linux	profiler	

–  Provides	the	perf	command	(mulK-tool)	
–  Usually	pkg	added	by	linux-tools-common,	etc.	

•  Many	event	sources:	
–  Timer-based	sampling	
–  Hardware	events	
–  Tracepoints	
–  Dynamic	tracing	

•  Can	sample	stacks	of	(almost)	everything	on	CPU	
–  Can	miss	hard	interrupt	ISRs,	but	these	should	be	near-zero.	They	can	be	measured	if	needed	(I	wrote	

my	own	tools).	

perf	Profiling	
perf record -F 99 -ag -- sleep 30
[perf record: Woken up 9 times to write data]
[perf record: Captured and wrote 2.745 MB perf.data (~119930 samples)]
perf report -n -stdio
[…]
Overhead Samples Command Shared Object Symbol
........
#
 20.42% 605 bash [kernel.kallsyms] [k] xen_hypercall_xen_version
 |
 --- xen_hypercall_xen_version
 check_events
 |
 |--44.13%-- syscall_trace_enter
 | tracesys
 | |
 | |--35.58%-- __GI___libc_fcntl
 | | |
 | | |--65.26%-- do_redirection_internal
 | | | do_redirections
 | | | execute_builtin_or_function
 | | | execute_simple_command
[… ~13,000 lines truncated …]

call tree
summary

Full	perf	report	Output	

…	as	a	Flame	Graph	

Flame	Graph	Summary	
•  Visualizes	a	collecKon	of	stack	traces	

–  x-axis:	alphabeKcal	stack	sort,	to	maximize	merging	
–  y-axis:	stack	depth	
–  color:	random	(default),	or	a	dimension	

•  Currently	made	from	Perl	+	SVG	+	JavaScript	
–  hBps://github.com/brendangregg/FlameGraph	
–  Takes	input	from	many	different	profilers	
–  MulKple	d3	versions	are	being	developed	

•  References:	
–  hcp://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html		
–  hcp://queue.acm.org/detail.cfm?id=2927301	
–  "The	Flame	Graph"	CACM,	June	2016	

Flame	Graph	InterpretaKon	

a()

b() h()

c()

d()

e() f()

g()

i()

Flame	Graph	InterpretaKon	(1/3)	
Top	edge	shows	who	is	running	on-CPU,	
and	how	much	(width)	

a()

b() h()

c()

d()

e() f()

g()

i()

Flame	Graph	InterpretaKon	(2/3)	

h()

d()

e()

i()

a()

b()

c()

f()

g()

Top-down	shows	ancestry	
e.g.,	from	g():	

Flame	Graph	InterpretaKon	(3/3)	

a()

b() h()

c()

d()

e() f()

g()

i()

Widths	are	proporKonal	to	presence	in	samples	
e.g.,	comparing	b()	to	h()	(incl.	children)	

Mixed-Mode	Flame	Graphs	
•  Hues:	

–  green	==	JIT	(eg,	Java)	
–  aqua	==	inlined	

•  if	included	

–  red	==	user-level*	
–  orange	==	kernel	
–  yellow	==	C++	

•  Intensity:	
–  Randomized	to	

differenKate	frames	
–  Or	hashed	on	

funcKon	name	

Java JVM
(C++)

Kernel Mixed-Mode

C

*	new	palece	uses	red	for	kernel	modules	too	

DifferenKal	Flame	Graphs	
•  Hues:	

–  red	==	more	samples	
–  blue	==	less	samples	

•  Intensity:	
–  Degree	of	difference	

•  Compares	two	profiles	
•  Can	show	other	

metrics:	e.g.,	CPI	
•  Other	types	exist	

–  flamegraphdiff	

Differential

more less

Icicle	Graph	

top (leaf) merge

Flame	Graph	Search	
•  Color:	magenta	

to	show	
matched	
frames	

search
button

Flame	Charts	

•  Flame charts: x-axis is time
•  Flame graphs: x-axis is population (maximize merging)

•  Final note: these are useful, but are not flame graphs

from	
Chrome	
dev	tools	

STACK	TRACING	
PiHalls	and	fixes	

Broken	Stack	Traces	are	Common	
Because:	

A.  Profilers	use	frame	pointer	walking	by	default	
B.  Compilers	reuse	the	frame	pointer	register	as	a	general	purpose	register:	a	

(usually	very	small)	performance	opKmizaKon.	

	 # perf record –F 99 –a –g – sleep 30
perf script
[…]
java 4579 cpu-clock:
 7f417908c10b [unknown] (/tmp/perf-4458.map)

java 4579 cpu-clock:
 7f41792fc65f [unknown] (/tmp/perf-4458.map)
 a2d53351ff7da603 [unknown] ([unknown])
[…]

…	as	a	Flame	Graph	

Broken Java stacks
(missing frame pointer)

Fixing	Stack	Walking	
A.  Frame	pointer-based	

–  Fix	by	disabling	that	compiler	opKmizaKon:	gcc's	-fno-omit-frame-pointer	
–  Pros:	simple,	supported	by	many	tools	
–  Cons:	might	cost	a	licle	extra	CPU	

B.  Debug	info	(DWARF)	walking	
–  Cons:	costs	disk	space,	and	not	supported	by	all	profilers.	Even	possible	with	JIT?	

C.  JIT	runKme	walkers	
–  Pros:	include	more	internals,	such	as	inlined	frames	
–  Cons:	limited	to	applicaKon	internals	-	no	kernel	

D. Last	branch	record	

Fixing	Java	Stack	Traces	
perf script
[…]
java 8131 cpu-clock:
 7fff76f2dce1 [unknown] ([vdso])
 7fd3173f7a93 os::javaTimeMillis() (/usr/lib/jvm…
 7fd301861e46 [unknown] (/tmp/perf-8131.map)
 7fd30184def8 [unknown] (/tmp/perf-8131.map)
 7fd30174f544 [unknown] (/tmp/perf-8131.map)
 7fd30175d3a8 [unknown] (/tmp/perf-8131.map)
 7fd30166d51c [unknown] (/tmp/perf-8131.map)
 7fd301750f34 [unknown] (/tmp/perf-8131.map)
 7fd3016c2280 [unknown] (/tmp/perf-8131.map)
 7fd301b02ec0 [unknown] (/tmp/perf-8131.map)
 7fd3016f9888 [unknown] (/tmp/perf-8131.map)
 7fd3016ece04 [unknown] (/tmp/perf-8131.map)
 7fd30177783c [unknown] (/tmp/perf-8131.map)
 7fd301600aa8 [unknown] (/tmp/perf-8131.map)
 7fd301a4484c [unknown] (/tmp/perf-8131.map)
 7fd3010072e0 [unknown] (/tmp/perf-8131.map)
 7fd301007325 [unknown] (/tmp/perf-8131.map)
 7fd301007325 [unknown] (/tmp/perf-8131.map)
 7fd3010004e7 [unknown] (/tmp/perf-8131.map)
 7fd3171df76a JavaCalls::call_helper(JavaValue*,…
 7fd3171dce44 JavaCalls::call_virtual(JavaValue*…
 7fd3171dd43a JavaCalls::call_virtual(JavaValue*…
 7fd31721b6ce thread_entry(JavaThread*, Thread*)…
 7fd3175389e0 JavaThread::thread_main_inner() (/…
 7fd317538cb2 JavaThread::run() (/usr/lib/jvm/nf…
 7fd3173f6f52 java_start(Thread*) (/usr/lib/jvm/…
 7fd317a7e182 start_thread (/lib/x86_64-linux-gn…

perf script
[…]
java 4579 cpu-clock:
 7f417908c10b [unknown] (/tmp/…

java 4579 cpu-clock:
 7f41792fc65f [unknown] (/tmp/…
 a2d53351ff7da603 [unknown] ([unkn…
[…]

I	prototyped	JVM	frame	
pointers.	Oracle	rewrote	it	
and	added	it	to	Java	as	
-XX:+PreserveFramePointer	
(JDK	8	u60b19)	

Fixed	Stacks	Flame	Graph	

Java stacks
(but no symbols, yet)

Inlining	

•  Many	frames	may	be	missing	(inlined)	
–  Flame	graph	may	sKll	make	enough	sense	

•  Inlining	can	oqen	be	be	tuned	
–  e.g.	Java's	-XX:-Inline	to	disable,	but	can	be	80%	slower	
–  Java's	-XX:MaxInlineSize	and	-XX:InlineSmallCode	can	be	tuned	

a	licle	to	reveal	more	frames:	can	even	improve	performance!	

•  RunKmes	can	un-inline	on	demand	
–  So	that	excepKon	stack	traces	make	sense	
–  e.g.	Java's	perf-map-agent	can	un-inline	(unfoldall	opKon)	

Stack	Depth	
•  perf	had	a	127	frame	limit	
•  Now	tunable	in	Linux	4.8	

–  sysctl	-w	kernel.perf_event_max_stack=512	
–  Thanks	Arnaldo	Carvalho	de	Melo!	

A	Java	microservice	
with	a	stack	depth	

of	>	900	broken	stacks	

perf_event_max_stack=1024	

SYMBOLS	
Fixing	

Fixing	NaKve	Symbols	
A.  Add	a	-dbgsym	package,	if	available	
B.  Recompile	from	source	

Fixing	JIT	Symbols	(Java,	Node.js,	…)	
•  Just-in-Kme	runKmes	don't	have	a	pre-compiled	symbol	table	
•  So	Linux	perf	looks	for	an	externally	provided	JIT	symbol	

file:	/tmp/perf-PID.map	

	
	
•  This	can	be	created	by	runKmes;	eg,	Java's	perf-map-agent	

perf script
Failed to open /tmp/perf-8131.map, continuing without symbols
[…]
java 8131 cpu-clock:
 7fff76f2dce1 [unknown] ([vdso])
 7fd3173f7a93 os::javaTimeMillis() (/usr/lib/jvm…
 7fd301861e46 [unknown] (/tmp/perf-8131.map)
[…]

Java Mixed-Mode Flame Graph

Fixed	Stacks	&	Symbols	

Java JVM

Kernel

GC

Stacks	&	Symbols	(zoom)	

Symbol	Churn	
•  For	JIT	runKmes,	symbols	can	change	during	a	profile	
•  Symbols	may	be	mistranslated	by	perf's	map	snapshot	
•  SoluKons:	

A.  Take	a	before	&	aqer	snapshot,	and	compare	
B.  perf's	new	support	for	Kmestamped	symbol	logs		

Containers	
•  perf	can't	find	any	symbol	sources	

–  Unless	you	copy	them	into	the	host	

•  I'm	tesKng	Krister	Johansen's	fix,	hopefully	for	Linux	4.13	
–  lkml:	"[PATCH	Kp/perf/core	0/7]	namespace	tracing	improvements"	

INSTRUCTIONS	
For	Linux	

Linux	CPU	Flame	Graphs	
Linux	2.6+,	via	perf.data	and	perf	script:	

	
Linux	4.5+	can	use	folded	output	

–  Skips	the	CPU-costly	stackcollapse-perf.pl	step;	see:	
hcp://www.brendangregg.com/blog/2016-04-30/linux-perf-folded.html	

Linux	4.9+,	via	BPF:	

–  Most	efficient:	no	perf.data	file,	summarizes	in-kernel	

git clone --depth 1 https://github.com/brendangregg/FlameGraph
cd FlameGraph
perf record -F 99 -a –g -- sleep 30
perf script | ./stackcollapse-perf.pl |./flamegraph.pl > perf.svg

git clone --depth 1 https://github.com/brendangregg/FlameGraph
git clone --depth 1 https://github.com/iovisor/bcc
./bcc/tools/profile.py -dF 99 30 | ./FlameGraph/flamegraph.pl > perf.svg

perf record

perf script

capture	stacks	

write	text	

stackcollapse-perf.pl

flamegraph.pl

perf.data	

write	samples	

reads	samples	

folded	output	

perf record

perf report –g
folded

capture	stacks	

folded	report	

awk

flamegraph.pl

perf.data	

write	samples	

reads	samples	

folded	output	

Linux	4.5	
count	stacks	(BPF)	

folded	
output	

flamegraph.pl

profile.py

Linux	4.9	

Linux	Profiling	OpKmizaKons	
Linux	2.6	

Language/RunKme	InstrucKons	
•  Each	may	have	special	stack/symbol	instrucKons	

–  Java,	Node.js,	Python,	Ruby,	C++,	Go,	…	

•  I'm	documenKng	some	on:	
–  hcp://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html		
–  Also	try	an	Internet	search	

	

GUI	AutomaKon	

Flame Graphs

Eg,	NeHlix	Vector	(self-service	UI):	

Should	be	open	sourced;	you	may	also	build/buy	your	own	

ADVANCED	FLAME	GRAPHS	
Future	Work	

Flame	graphs	can	be	generated	for	stack	traces	from	any	Linux	event	source	

Page	Faults	
•  Show	what	triggered	main	memory	(resident)	to	grow:	

•  "fault"	as	(physical)	main	memory	is	allocated	on-demand,	
when	a	virtual	page	is	first	populated	

•  Low	overhead	tool	to	solve	some	types	of	memory	leak	

perf record -e page-faults -p PID -g -- sleep 120

RES column in top(1) grows
because

Other	Memory	Sources	

hcp://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html	

Context	Switches	
•  Show	why	Java	blocked	and	stopped	running	on-CPU:	

•  IdenKfies	locks,	I/O,	sleeps	
–  If	code	path	shouldn't	block	and	looks	random,	it's	an	involuntary	context	switch.	I	could	filter	these,	but	you	should	

have	solved	them	beforehand	(CPU	load).	

•  e.g.,	was	used	to	understand	framework	differences:	

perf record -e context-switches -p PID -g -- sleep 5

vs

rxNetty Tomcat

futex

sys_poll

epoll futex

Disk	I/O	Requests	
•  Shows	who	issued	disk	I/O	(sync	reads	&	writes):	

•  e.g.:	page	faults	in	GC?	This	JVM	has	swapped	out!:	
perf record -e block:block_rq_insert -a -g -- sleep 60

GC

TCP	Events	
•  TCP	transmit,	using	dynamic	tracing:	

•  Note:	can	be	high	overhead	for	high	packet	rates	
–  For	the	current	perf	trace,	dump,	post-process	cycle	

•  Can	also	trace	TCP	connect	&	accept	
–  Lower	frequency,	therefore	lower	overhead	

•  TCP	receive	is	async	
–  Could	trace	via	socket	read	

perf probe tcp_sendmsg
perf record -e probe:tcp_sendmsg -a -g -- sleep 1; jmaps
perf script -f comm,pid,tid,cpu,time,event,ip,sym,dso,trace > out.stacks
perf probe --del tcp_sendmsg

TCP sends

CPU	Cache	Misses	
•  In	this	example,	sampling	via	Last	Level	Cache	loads:	
	
	
•  -c	is	the	count	(samples	

once	per	count)	
•  Use	other	CPU	counters	to	

sample	hits,	misses,	stalls	

	

perf record -e LLC-loads -c 10000 -a -g -- sleep 5; jmaps
perf script -f comm,pid,tid,cpu,time,event,ip,sym,dso > out.stacks

CPI	Flame	Graph	
•  Cycles	Per	InstrucKon	

–  red	==	instrucKon	heavy	
–  blue	==	cycle	heavy	

(likely	memory	stall	cycles)	

zoomed:

Off-CPU	Analysis	

Off-CPU	analysis	is	the	study	of	
blocking	states,	or	the	code-path	
(stack	trace)	that	led	to	these	states	

Off-CPU	Time	Flame	Graph	

More	info	hcp://www.brendangregg.com/blog/2016-02-01/linux-wakeup-offwake-profiling.html	

Stack depth
Off-CPU time

Off-CPU	Time	(zoomed):	tar(1)	

file read
from disk

directory read
from disk

Only	showing	kernel	stacks	in	this	example	

pipe write
path read from disk

fstat from disk

CPU	+	Off-CPU	Flame	Graphs:	See	Everything	

hcp://www.brendangregg.com/flamegraphs.html	

CPU	

Off-CPU	

Off-CPU	Time	(zoomed):	gzip(1)	

The off-CPU stack trace often doesn't show the root cause of latency.
What is gzip blocked on?

Off-Wake	Time	Flame	Graph	

Uses	Linux	enhanced	BPF	to	merge	off-CPU	and	waker	stack	in	kernel	context	

Off-Wake	Time	Flame	Graph	(zoomed)	
Waker	task	

Waker	stack	

Blocked	stack	

Blocked	task	

Stack	
DirecKon	

Wokeup	

Chain	Graphs	

Walking	the	chain	of	wakeup	stacks	to	reach	root	cause	

Hot	Cold	Flame	Graphs	
Includes	both	CPU	&	
Off-CPU	(or	chain)	stacks	
in	one	flame	graph	
•  However,	Off-CPU	Kme	oqen	

dominates:	threads	waiKng	or	
polling	

hcp://www.brendangregg.com/FlameGraphs/hotcoldflamegraphs.html	

Flame	Graph	Diff	

hcps://github.com/corpaul/flamegraphdiff	

Take	aways	
1.  Interpret	CPU	flame	graphs	
2.  Understand	piHalls	with	stack	traces	and	symbols	
3.  Discover	opportuniKes	for	future	development	

Links	&	References	
•  Flame	Graphs	

–  "The	Flame	Graph"	Communica-ons	of	the	ACM,	Vol.	56,	No.	6	(June	2016)	
–  hcp://queue.acm.org/detail.cfm?id=2927301		
–  hcp://www.brendangregg.com/flamegraphs.html	->	hBp://www.brendangregg.com/flamegraphs.html#Updates		
–  hcp://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html		
–  hcp://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html		
–  hcp://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html		
–  hcp://techblog.neHlix.com/2015/07/java-in-flames.html		
–  hcp://techblog.neHlix.com/2016/04/saving-13-million-computaKonal-minutes.html		
–  hcp://techblog.neHlix.com/2014/11/nodejs-in-flames.html	
–  hcp://www.brendangregg.com/blog/2014-11-09/differenKal-flame-graphs.html		
–  hcp://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html		
–  hcp://www.brendangregg.com/blog/2016-02-01/linux-wakeup-offwake-profiling.html		
–  hcp://www.brendangregg.com/blog/2016-02-05/ebpf-chaingraph-prototype.html				
–  hcp://corpaul.github.io/flamegraphdiff/		

•  Linux	perf_events	
–  hcps://perf.wiki.kernel.org/index.php/Main_Page		
–  hcp://www.brendangregg.com/perf.html		

•  NeHlix	Vector	
–  hcps://github.com/neHlix/vector	
–  hcp://techblog.neHlix.com/2015/04/introducing-vector-neHlixs-on-host.html	

Thank You

–  QuesKons?	
–  hcp://www.brendangregg.com	
–  hcp://slideshare.net/brendangregg		
–  bgregg@neHlix.com	
–  @brendangregg	
	
	
	

Next	topic:	Performance	Superpowers	with	Enhanced	BPF	

2017 USENIX Annual Technical Conference

