
Stop the Guessing

Performance Methodologies for
Production Systems

Brendan Gregg

Lead Performance Engineer, Joyent

Wednesday, June 19, 13

Audience
 This is for developers, support, DBAs, sysadmins
 When perf isn’t your day job, but you want to:

- Fix common performance issues, quickly
- Have guidance for using performance monitoring tools

 Environments with small to large scale production systems

Wednesday, June 19, 13

whoami
 Lead Performance Engineer: analyze everything from apps to metal
 Work/Research: tools, visualizations, methodologies
 Methodologies is the focus of my next book

Wednesday, June 19, 13

 Joyent
 High-Performance Cloud Infrastructure

- Public/private cloud provider
 OS Virtualization for bare metal performance
 KVM for Linux and Windows guests
 Core developers of SmartOS and node.js

Wednesday, June 19, 13

Performance Analysis
 Where do I start?
 Then what do I do?

Wednesday, June 19, 13

Performance Methodologies
 Provide

- Beginners: a starting point
- Casual users: a checklist
- Guidance for using existing tools: pose questions to ask

 The following six are for production system monitoring

Wednesday, June 19, 13

Production System Monitoring
 Guessing Methodologies

- 1. Traffic Light Anti-Method
- 2. Average Anti-Method
- 3. Concentration Game Anti-Method

 Not Guessing Methodologies
- 4. Workload Characterization Method
- 5. USE Method
- 6. Thread State Analysis Method

Wednesday, June 19, 13

Traffic Light Anti-Method

Wednesday, June 19, 13

Traffic Light Anti-Method
 1. Open monitoring dashboard
 2. All green? Everything good, mate.

= BAD
= GOOD

Wednesday, June 19, 13

Traffic Light Anti-Method, cont.
 Performance is subjective

- Depends on environment, requirements
- No universal thresholds for good/bad

 Latency outlier example:
- customer A) 200 ms is bad
- customer B) 2 ms is bad (an “eternity”)

 Developer may have chosen thresholds by guessing

Wednesday, June 19, 13

Traffic Light Anti-Method, cont.
 Performance is complex

- Not just one threshold required, but multiple different tests
 For example, a disk traffic light:

- Utilization-based: one disk at 100% for less than 2 seconds means green
(variance), for more than 2 seconds is red (outliers or imbalance), but if all
disks are at 100% for more than 2 seconds, that may be green (FS flush)
provided it is async write I/O, if sync then red, also if their IOPS is less than
10 each (errors), that’s red (sloth disks), unless those I/O are actually huge,
say, 1 Mbyte each or larger, as that can be green, ... etc ...

- Latency-based: I/O more than 100 ms means red, except for async writes
which are green, but slowish I/O more than 20 ms can red in combination,
unless they are more than 1 Mbyte each as that can be green ...

Wednesday, June 19, 13

Traffic Light Anti-Method, cont.
 Types of error:

- I. False positive: red instead of green
- Team wastes time

- II. False negative: green insead of red
- Performance issues remain undiagnosed
- Team wastes more time looking elsewhere

Wednesday, June 19, 13

Traffic Light Anti-Method, cont.
 Subjective metrics (opinion):

- utilization, IOPS, latency
 Objective metrics (fact):

- errors, alerts, SLAs
 For subjective metrics, use

weather icons
- implies an inexact science,

with no hard guarantees
- also attention grabbing

 A dashboard can use both as
appropriate for the metric

http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard

Wednesday, June 19, 13

http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/
http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/

Traffic Light Anti-Method, cont.
 Pros:

- Intuitive, attention grabbing
- Quick (initially)

 Cons:
- Type I error (red not green): time wasted
- Type II error (green not red): more time wasted & undiagnosed errors
- Misleading for subjective metrics: green might not mean what you think it

means - depends on tests
- Over-simplification

Wednesday, June 19, 13

Average Anti-Method

Wednesday, June 19, 13

Average Anti-Method
 1. Measure the average (mean)
 2. Assume a normal-like distribution (unimodal)
 3. Focus investigation on explaining the average

Wednesday, June 19, 13

Average Anti-Method: You Have

mean stddevstddev 99th

Latency

Wednesday, June 19, 13

Average Anti-Method: You Guess

mean stddevstddev 99th

Latency

Wednesday, June 19, 13

Average Anti-Method: Reality

mean stddevstddev 99th

Latency

Wednesday, June 19, 13

Average Anti-Method: Reality x50

http://dtrace.org/blogs/brendan/2013/06/19/frequency-trails

Wednesday, June 19, 13

http://dtrace.org/blogs/brendan/2013/06/19/frequency-trails/
http://dtrace.org/blogs/brendan/2013/06/19/frequency-trails/

Average Anti-Method: Examine the Distribution
 Many distributions aren’t normal, gaussian, or unimodal
 Many distributions have outliers

- seen by the max; may not be visible in the 99...th percentiles
- influence mean and stddev

Wednesday, June 19, 13

Average Anti-Method: Outliers

mean stddev 99th

Latency

Wednesday, June 19, 13

Average Anti-Method: Visualizations
 Distribution is best understood by examining it

- Histogram summary
- Density Plot detailed summary (shown earlier)
- Frequency Trail detailed summary, highlights outliers (previous slides)
- Scatter Plot show distribution over time
- Heat Map show distribution over time, and is scaleable

Wednesday, June 19, 13

Average Anti-Method: Heat Map

http://dtrace.org/blogs/brendan/2013/05/19/revealing-hidden-latency-patterns
http://queue.acm.org/detail.cfm?id=1809426

Time (s)

La
te

nc
y

(u
s)

Wednesday, June 19, 13

http://dtrace.org/blogs/brendan/2013/05/19/revealing-hidden-latency-patterns/
http://dtrace.org/blogs/brendan/2013/05/19/revealing-hidden-latency-patterns/
http://queue.acm.org/detail.cfm?id=1809426
http://queue.acm.org/detail.cfm?id=1809426

Average Anti-Method
 Pros:

- Averages are versitile: time series line graphs, Little’s Law
 Cons:

- Misleading for multimodal distributions
- Misleading when outliers are present
- Averages are average

Wednesday, June 19, 13

Concentration Game Anti-Method

Wednesday, June 19, 13

Concentration Game Anti-Method
 1. Pick one metric
 2. Pick another metric
 3. Do their time series look the same?

- If so, investigate correlation!
 4. Problem not solved? goto 1

Wednesday, June 19, 13

Concentration Game Anti-Method, cont.

App Latency

Wednesday, June 19, 13

Concentration Game Anti-Method, cont.

NO

App Latency

Wednesday, June 19, 13

Concentration Game Anti-Method, cont.

YES!

App Latency

Wednesday, June 19, 13

Concentration Game Anti-Method, cont.
 Pros:

- Ages 3 and up
- Can discover important correlations between distant systems

 Cons:
- Time consuming: can discover many symptoms before the cause
- Incomplete: missing metrics

Wednesday, June 19, 13

Workload Characterization Method

Wednesday, June 19, 13

Workload Characterization Method
 1. Who is causing the load?
 2. Why is the load called?
 3. What is the load?
 4. How is the load changing over time?

Wednesday, June 19, 13

Workload Characterization Method, cont.
 1. Who: PID, user, IP addr, country, browser
 2. Why: code path, logic
 3. What: targets, URLs, I/O types, request rate (IOPS)
 4. How: minute, hour, day

 The target is the system input (the workload)
not the resulting performance

SystemWorkload

Wednesday, June 19, 13

Workload Characterization Method, cont.
 Pros:

- Potentially largest wins: eliminating unnecessary work
 Cons:

- Only solves a class of issues – load
- Can be time consuming and discouraging – most attributes examined will not

be a problem

Wednesday, June 19, 13

USE Method

Wednesday, June 19, 13

USE Method
 For every resource, check:
 1. Utilization
 2. Saturation
 3. Errors

Wednesday, June 19, 13

USE Method, cont.
 For every resource, check:
 1. Utilization: time resource was busy, or degree used
 2. Saturation: degree of queued extra work
 3. Errors: any errors

 Identifies resource bottnecks
quickly

Saturation

Errors

X Utilization

Wednesday, June 19, 13

USE Method, cont.
 Hardware Resources:

- CPUs
- Main Memory
- Network Interfaces
- Storage Devices
- Controllers
- Interconnects

 Find the functional diagram and examine every item in the data path...

Wednesday, June 19, 13

USE Method, cont.: System Functional Diagram

DRAM CPU
1 DRAM

CPU
Interconnect

Memory
Bus

Memory
Bus

I/O Bridge

I/O Controller Network Controller

Disk Disk Port Port

I/O Bus

Expander Interconnect

Interface
Transports

CPU
1

For each check:
1. Utilization
2. Saturation
3. Errors

Wednesday, June 19, 13

USE Method, cont.: Linux System Checklist
Resource Type Metric

CPU Utilization

per-cpu: mpstat -P ALL 1, “%idle”; sar -P ALL, “%idle”;
system-wide: vmstat 1, “id”; sar -u, “%idle”; dstat -c, “idl”;
per-process:top, “%CPU”; htop, “CPU%”; ps -o pcpu; pidstat
1, “%CPU”; per-kernel-thread: top/htop (“K” to toggle), where VIRT
== 0 (heuristic).

CPU Saturation

system-wide: vmstat 1, “r” > CPU count [2]; sar -q, “runq-sz” >
CPU count; dstat -p, “run” > CPU count; per-process: /proc/PID/
schedstat 2nd field (sched_info.run_delay); perf sched latency
(shows “Average” and “Maximum” delay per-schedule); dynamic
tracing, eg, SystemTap schedtimes.stp “queued(us)”

CPU Errors perf (LPE) if processor specific error events (CPC) are available; eg,
AMD64′s “04Ah Single-bit ECC Errors Recorded by Scrubber”

...

http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist

Wednesday, June 19, 13

http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/
http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/

USE Method, cont.: Monitoring Tools
 Average metrics don’t work: individual components can become bottlenecks
 Eg, CPU utilization
 Utilization heat map on the right

shows 5,312 CPUs for 60 secs;
can still identify “hot CPUs”

100

0

U
til

iz
at

io
n

Time

darkness == # of CPUs

hot CPUs

http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization

Wednesday, June 19, 13

http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/
http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/

USE Method, cont.: Other Targets
 For cloud computing, must study any resource limits as well as physical; eg:

- physical network interface U.S.E.
- AND instance network cap U.S.E.

 Other software resources can also be studied with USE metrics:
- Mutex Locks
- Thread Pools

 The application environment can also be studied
- Find or draw a functional diagram
- Decompose into queueing systems

Wednesday, June 19, 13

USE Method, cont.: Homework
 Your ToDo:

- 1. find a system functional diagram
- 2. based on it, create a USE checklist on your internal wiki
- 3. fill out metrics based on your available toolset
- 4. repeat for your application environment

 You get:
- A checklist for all staff for quickly finding bottlenecks
- Awareness of what you cannot measure:
- unknown unknowns become known unknowns
- ... and known unknowns can become feature requests!

Wednesday, June 19, 13

USE Method, cont.
 Pros:

- Complete: all resource bottlenecks and errors
- Not limited in scope by available metrics
- No unknown unknowns – at least known unknowns
- Efficient: picks three metrics for each resource –

from what may be hundreds available
 Cons:

- Limited to a class of issues: resource bottlenecks

Wednesday, June 19, 13

Thread State Analysis Method

Wednesday, June 19, 13

Thread State Analysis Method
 1. Divide thread time into operating system states
 2. Measure states for each application thread
 3. Investigate largest non-idle state

Wednesday, June 19, 13

Thread State Analysis Method, cont.: 2 State
 A minimum of two states:

On-CPU

Off-CPU

Wednesday, June 19, 13

Thread State Analysis Method, cont.: 2 State
 A minimum of two states:

 Simple, but off-CPU state ambiguous without further division

On-CPU executing
spinning on a lock

Off-CPU

waiting for a turn on-CPU
waiting for storage or network I/O
waiting for swap ins or page ins
blocked on a lock
idle waiting for work

Wednesday, June 19, 13

Thread State Analysis Method, cont.: 6 State
 Six states, based on Unix process states:

Executing

Runnable

Anonymous Paging

Sleeping

Lock

Idle

Wednesday, June 19, 13

Thread State Analysis Method, cont.: 6 State
 Six states, based on Unix process states:

 Generic: works for all applications

Executing on-CPU

Runnable and waiting for a turn on CPU

Anonymous Paging runnable, but blocked waiting for page ins

Sleeping waiting for I/O: storage, network, and data/text page ins

Lock waiting to acquire a synchronization lock

Idle waiting for work

Wednesday, June 19, 13

Thread State Analysis Method, cont.
 As with other methodologies, these pose questions to answer

- Even if they are hard to answer
 Measuring states isn’t currently easy, but can be done

- Linux: /proc, schedstats, delay accounting, I/O accounting, DTrace
- SmartOS: /proc, microstate accounting, DTrace

 Idle state may be the most difficult: applications use different techniques to
wait for work

Wednesday, June 19, 13

Thread State Analysis Method, cont.
 States lead to further investigation and actionable items:

Executing Profile stacks; split into usr/sys; sys = analyze syscalls

Runnable Examine CPU load for entire system, and caps

Anonymous Paging Check main memory free, and process memory usage

Sleeping Identify resource thread is blocked on; syscall analysis

Lock Lock analysis

Wednesday, June 19, 13

Thread State Analysis Method, cont.
 Compare to database query time. This alone can be misleading, including:

- swap time (anonymous paging) due to a memory misconfig
- CPU scheduler latency due to another application

 Same for any “time spent in ...” metric
- is it really in ...?

Wednesday, June 19, 13

Thread State Analysis Method, cont.
 Pros:

- Identifies common problem sources, including from other applications
- Quantifies application effects: compare times numerically
- Directs further analysis and actions

 Cons:
- Currently difficult to measure all states

Wednesday, June 19, 13

More Methodologies
 Include:

- Drill Down Analysis
- Latency Analysis
- Event Tracing
- Scientific Method
- Micro Benchmarking
- Baseline Statistics
- Modelling

 For when performance is your day job

Wednesday, June 19, 13

Stop the Guessing
 The anti-methodolgies involved:

- guesswork
- beginning with the tools or metrics (answers)

 The actual methodolgies posed questions, then sought metrics to answer them
 You don’t need to guess – post-DTrace, practically everything can be known
 Stop guessing and start asking questions!

Wednesday, June 19, 13

Thank You!
 email: brendan@joyent.com
 twitter: @brendangregg
 github: https://github.com/brendangregg
 blog: http://dtrace.org/blogs/brendan
 blog resources:

- http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard
- http://dtrace.org/blogs/brendan/2013/06/19/frequency-trails
- http://dtrace.org/blogs/brendan/2013/05/19/revealing-hidden-latency-patterns
- http://dtrace.org/blogs/brendan/2012/03/07/the-use-method-linux-performance-checklist
- http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization

Wednesday, June 19, 13

mailto:brendan@joyent.com
mailto:brendan@joyent.com
http://dtrace.org/blogs/brendan
http://dtrace.org/blogs/brendan
http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/
http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/
http://dtrace.org/blogs/brendan/2013/06/19/frequency-trails/
http://dtrace.org/blogs/brendan/2013/06/19/frequency-trails/
http://dtrace.org/blogs/brendan/2013/05/19/revealing-hidden-latency-patterns/
http://dtrace.org/blogs/brendan/2013/05/19/revealing-hidden-latency-patterns/
http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/
http://dtrace.org/blogs/brendan/2008/11/10/status-dashboard/
http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/
http://dtrace.org/blogs/brendan/2011/12/18/visualizing-device-utilization/

