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# dtrace -n 'syscall:::entry { @[exe

dtrace: description 'syscall:::entry 

^C

  iscsitgtd                         1

  nscd                              1

  operapluginclean                  3

  screen-4.0.2                      3

  devfsadm                          4

  httpd                            10

  sendmail                         10

  xload                            10

  evince                           12

  operapluginwrapp                 20

  xclock                           20

  xntpd                            25

  FvwmIconMan                      32

  fmd                              81

  FvwmPager                       170

  dtrace                          432

  gnome-terminal                  581

  fvwm2                          1045

  x64                            1833

  akd                            2574

  opera                          2923

  Xorg                           4723

  soffice.bin                    5037
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Introduction

Brendan Gregg
Sun Microsystems
April 2007

1



2

DTrace Topics: Introduction

• This presentation is an introduction to DTrace, and 
is part of the “DTrace Topics” collection.
> Difficulty:
> Audience: Everyone

• These slides cover:
> What is DTrace
> What is DTrace for
> Who uses DTrace
> DTrace Essentials
> Usage Features
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What is DTrace

• DTrace is a dynamic troubleshooting and analysis 
tool first introduced in the Solaris 10 and 
OpenSolaris operating systems.
• DTrace is many things, in particular:
> A tool
> A programming language interpreter
> An instrumentation framework

• DTrace provides observability across the entire 
software stack from one tool. This allows you to 
examine software execution like never before.
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DTrace example #1

• Tracing new processes system-wide,

System calls are only one layer of the software stack.

# dtrace -n 'syscall::exece:return { trace(execname); }'

dtrace: description 'syscall::exece:return ' matched 1 probe

CPU     ID                    FUNCTION:NAME

  0  76044                     exece:return   man  

  0  76044                     exece:return   sh   

  0  76044                     exece:return   neqn 

  0  76044                     exece:return   tbl  

  0  76044                     exece:return   nroff

  0  76044                     exece:return   col  

  0  76044                     exece:return   sh   

  0  76044                     exece:return   mv   

  0  76044                     exece:return   sh   

  0  76044                     exece:return   more 



5

The Entire Software Stack

• How did you analyze these?

Kernel
Memory
allocation SchedulerDevice Drivers

Syscall Interface

Libraries

User Executable

Dynamic Languages

Hardware

Examples:

Java, JavaScript, ...

/usr/bin/*

/usr/lib/*

VFS, DNLC, UFS,
ZFS, TCP, IP, ...
sd, st, hme, eri, ... 

man -s2

disk data controller

File Systems
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The Entire Software Stack

• It was possible, but difficult:

Kernel
Memory
allocation SchedulerDevice Drivers

Syscall Interface

Libraries

User Executable

Dynamic Languages

Hardware

Previously:

debuggers

truss -ua.out

apptrace, sotruss

prex; tnf*
lockstat
mdb

truss

kstat, PICs, guesswork

File Systems
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The Entire Software Stack

• DTrace is all seeing:

Kernel
Memory
allocation SchedulerDevice Drivers

Syscall Interface

Libraries

User Executable

Dynamic Languages

Hardware

DTrace visibility:

Yes, with providers

Yes

Yes

Yes

Yes

No. Indirectly, yes

File Systems



8

What DTrace is like

• DTrace has the combined capabilities of numerous 
previous tools and more:

Plus a programming language similar to C and awk.

Tool Capability

 truss -ua.out tracing user functions

 apptrace tracing library calls

  truss   tracing system calls

 prex; tnf* tracing some kernel functions

 lockstat profiling the kernel

 mdb -k accessing kernel VM

 mdb -p accessing process VM
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Syscall Example

• Using truss:

$ truss date

execve("/usr/bin/date", 0x08047C9C, 0x08047CA4)  argc = 1

resolvepath("/usr/lib/ld.so.1", "/lib/ld.so.1", 1023) = 12

resolvepath("/usr/bin/date", "/usr/bin/date", 1023) = 13

xstat(2, "/usr/bin/date", 0x08047A58)           = 0

open("/var/ld/ld.config", O_RDONLY)             = 3

fxstat(2, 3, 0x08047988)                        = 0

mmap(0x00000000, 152, PROT_READ, MAP_SHARED, 3, 0) = 0xFEFB0000

close(3)                                        = 0

mmap(0x00000000, 4096, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_ANON, -1

sysconfig(_CONFIG_PAGESIZE)                     = 4096

[...]

Only examine 1 process

Output is
limited to
provided
options

truss slows down the target
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Syscall Example

• Using DTrace:

# dtrace -n 'syscall:::entry { printf("%16s %x %x", execname, arg0, arg1); }'

dtrace: description 'syscall:::entry ' matched 233 probes

CPU     ID                    FUNCTION:NAME

  1  75943                       read:entry             Xorg f 8047130

  1  76211                  setitimer:entry             Xorg 0 8047610

  1  76143                     writev:entry             Xorg 22 80477f8

  1  76255                    pollsys:entry             Xorg 8046da0 1a

  1  75943                       read:entry             Xorg 22 85121b0

  1  76035                      ioctl:entry      soffice.bin 6 5301

  1  76035                      ioctl:entry      soffice.bin 6 5301

  1  76255                    pollsys:entry      soffice.bin 8047530 2

[...]

You choose the output

Watch every processMinimum performance cost
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What is DTrace for

• Troubleshooting software bugs
> Proving what the problem is, and isn't.
> Measuring the magnitude of the problem.

• Detailed observability
> Observing devices, such as disk or network activity.
> Observing applications, whether they are from Solaris,  

3rd party, or in-house.

• Capturing profiling data for performance analysis 
> If there is latency somewhere, DTrace can find it
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What isn't DTrace

• DTrace isn't a replacement for kstat or SMNP
> kstat already provides inexpensive long term monitoring.

• DTrace isn't sentient, it needs to borrow your brain 
to do the thinking
• DTrace isn't “dTrace”



13

Who is DTrace for

• Application Developers
> Fetch in-flight profiling data without restarting the apps, 

even on customer production servers.
> Detailed visibility of all the functions that they wrote, and 

the rest of the software stack.
> Add static probes as a stable debug interface.

• Application Support
> Provides a comprehensive insight into application 

behavior.
> Analyze faults and root-cause performance issues.
> Prove where issues are, and measure their magnitude.
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Who is DTrace for

• System Administrators
> Troubleshoot, analyze, investigate where never before.
> See more of your system - fills in many observability 

gaps.

• Database Administrators
> Analyze throughput performance issues across all 

system components.

• Security Administrators
> Customized short-term auditing
> Malware deciphering
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Who is DTrace for

• Kernel Engineers
> Fetch kernel trace data from almost every function.
> Function arguments are auto-casted providing access to 

all struct members.
> Fetch nanosecond timestamps for function execution.
> Troubleshoot device drivers, including during boot.
> Add statically defined trace points for debugging.
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How to use DTrace

• DTrace can be used by either:
> Running prewritten one-liners and scripts

– DTrace one-liners are easy to use and ofter useful, 
http://www.solarisinternals.com/dtrace

– The DtraceToolkit contains over 100 scripts ready to run, 
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit

> Writing your own one-liners and scripts
– Encouraged – the possibilities are endless
– It helps to know C
– It can help to know operating system fundamentals

http://www.solarisinternals.com/dtrace
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit
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DTrace wins

• Finding unnecessary work
> Having deep visibility often finds work being performed 

that isn't needed. Eliminating these can produce the 
biggest DTrace wins – 2x, 20x, etc.

• Solving performance issues
> Being able to measure where the latencies are, and 

show what their costs are. These can produce typical 
performance wins – 5%, 10%, etc.
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DTrace wins

• Finding bugs
> Many bugs are found though static debug frameworks; 

DTrace is a dynamic framework that allows custom and 
comprehensive debug info to be fetched when needed.

• Proving performance issues
> Many valuable DTrace wins have no immediate percent 

improvement, they are about gathering evidence to 
prove the existence and magnitude of issues.



19

Example scenario: The past

• Take a performance issue on a complex customer 
system,

• With previous observability tools, customers could 
often find problems but not take the measurements 
needed to prove that they found the problem.
> What is the latency cost for this issue? As a percent?

Customer:
“Why is our system slow?”
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Example scenario: The past

• The “blame wheel”

Application Vendor:
“The real problem
 may be the database.”

Database Vendor:
“The real problem
 may be the OS.”

OS Vendor:
“The real problem may be the application.”
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Example scenario: The past

• The lack of proof can mean stalemate. 

Customer:
“I think I've found the issue 
 in the application code.”

Application Vendor:
“That issue is costly to fix.
 We are happy to fix it, so long as
 you can prove that this is the issue.”
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Example scenario: The future
A happy ending

• With DTrace, all players can examine all of the 
software themselves.

– Example: “80% of the average transaction time is spent in the 
application waiting for user-level locks.”

Customer:
“I measured the problem,
 it is in the application.”

Application Vendor:
“I'd better fix that right away.”
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Example scenario: The future
An alternate happy ending for application vendors

– Example: “80% of our average transaction time is consumed by 
a bug in libc.”

OS Vendor:
“We'd better fix that right away.”

Application Vendor:
“We measured the problem
 and found it was in the OS.”
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Answers to initial questions

• DTrace is not available for Solaris 9.
• You need to be root, or have the correct privileges, 

to run /usr/sbin/dtrace.
• There is a GUI called chime.
• DTrace is safe for production use, provided you 

don't deliberately try to cause harm.
• DTrace has low impact when in use, and zero 

impact when not.
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What's next:

• We just covered:
> What is DTrace
> What is DTrace for
> Who uses DTrace

• Next up is:
> DTrace Essentials
> Usage Features
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Terminology

• Example #1

# dtrace -n 'syscall::exece:return { trace(execname); }'

dtrace: description 'syscall::exece:return ' matched 1 probe

CPU     ID                    FUNCTION:NAME

  0  76044                     exece:return   man  

  0  76044                     exece:return   sh   

  0  76044                     exece:return   neqn 

  0  76044                     exece:return   tbl  

  0  76044                     exece:return   nroff

[...]

consumer probe action



27

Consumer

• Consumers of libdtrace(3LIB),
dtrace  command line and scripting interface
lockstat kernel lock statistics
plockstat user-level lock statistics
intrstat run-time interrupt statistics

• libdtrace is currently a private interface and not to 
be used directly (nor is there any great reason to); 
the supported interface is dtrace(1M).
> NOTE: You are still encouraged to use libkstat(3LIB) and 

proc(4) directly, rather than wrapping /usr/bin consumers.
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Privileges

• Non-root users need certain DTrace privileges to be 
able to use DTrace.
• These privileges are from the Solaris 10 “Least 

Privilege” feature.

$ id

uid=1001(user1) gid=1(other)

$ /usr/sbin/dtrace -n 'syscall::exece:return'

dtrace: failed to initialize dtrace: DTrace requires additional privileges
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Probes

• Data is generated from instrumentation points called 
“probes”. 
• DTrace provides thousands of probes.
• Probe examples:

Probe Name Description
syscall::read:entry A read() syscall began
proc:::exec-success A process created successfully
io:::start An I/O was issued (disk/vol/NFS)
io:::done An I/O completed
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Probe Names

• Probe names are a four-tuple:

> Provider A library of related probes.
> Module The module the function belongs to,

either a kernel module or user segment.
> Function The function name that contains the probe.
> Name The name of the probe.

syscall::exece:return

Provider Module Function Name
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Listing Probes

• dtrace -l lists all currently available probes that 
you have privilege to see, with one probe per line:

• Here the root user sees 69,879 available probes.
• The probe count changes – it is dynamic (DTrace).

# dtrace -l

   ID   PROVIDER            MODULE                          FUNCTION NAME

    1     dtrace                                                     BEGIN

    2     dtrace                                                     END

    3     dtrace                                                     ERROR

    4      sched                FX                          fx_yield schedctl-yi

[...]

# dtrace -l | wc -l

   69880
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Tracing Probes

• dtrace -n takes a probe name and enables tracing:

• The default output contains:
– CPU CPU id that event occured on (if this

changes, the output may be shuffled)
– ID DTrace probe id
– FUNCTION:NAME Part of the probe name

# dtrace -n syscall::exece:return

dtrace: description 'syscall::exece:return' matched 1 probe

CPU     ID                    FUNCTION:NAME

  0  76044                     exece:return 

  0  76044                     exece:return 

^C
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Providers

• Examples of providers:
  

Provider Description
syscall system call entries and returns
proc process and thread events
sched kernel scheduling events
sysinfo system statistic events
vminfo virtual memory events
io system I/O events
profile fixed rate sampling
pid user-level tracing
fbt raw kernel tracing
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Providers

• Example of probes:
  

Provider Example probe
syscall syscall::read:entry
proc proc:::exec-success
sched sched:::on-cpu
sysinfo sysinfo:::readch
vminfo vminfo:::maj_fault
io io:::start
profile profile:::profile-1000hz
pid pid172:libc:fopen:entry
  pid172:a.out:main:entry
fbt fbt::bdev_strategy:entry
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Providers

• Providers are documented in the DTrace Guide, as 
separate chapters.
• Providers are dynamic, the number of available 

probes can vary. 
• Some providers are “unstable interface”, such as 
fbt and sdt. 
> This means that their probes, while useful, may vary in 

name and arguments between Solaris versions. 
> Try to use stable providers instead (if possible).
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Provider Documentation

• Some providers assume a little background 
knowledge, other providers assume a lot. Knowing 
where to find supporting documentation is 
important.
• Where do you find documentation on:
> Syscalls?
> User Libraries?
> Application Code?
> Kernel functions?
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Provider Documentation

• Additional documentation may be found here:

Target Provider Additional Docs
syscalls syscall man(2)
libraries pid:lib* man(3C)
app code pid:a.out source code?
raw kernel fbt Solaris Internals 2nd Ed,

http://cvs.opensolaris.org

http://cvs.opensolaris.org/
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Actions

• When a probe fires, an action executes.
• Actions are written in the D programming language.
• Actions can:
> print output
> save data to variables, and perform calculations
> walk kernel or process memory

• With destruction actions allowed, actions can:
> raise signals on processes
> execute shell commands
> write to some areas of memory
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trace() Example

• The trace() action accepts one argument and prints 
it when the probe fired.

# dtrace -n 'syscall::exece:return { trace(execname); }'

dtrace: description 'syscall::exece:return ' matched 1 probe

CPU     ID                    FUNCTION:NAME

  0  76044                     exece:return   man  

  0  76044                     exece:return   sh   

  0  76044                     exece:return   neqn 

  0  76044                     exece:return   tbl  

  0  76044                     exece:return   nroff

  0  76044                     exece:return   col   

[...]
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printf() Example

     

• DTrace ships with a powerful printf(), to print 
formatted output.

# dtrace -n 'syscall::exece:return { printf("%6d %s\n", pid, execname); }'

dtrace: description 'syscall::exece:return ' matched 1 probe

CPU     ID                    FUNCTION:NAME

  0  74415                     exece:return   4301 sh

  0  74415                     exece:return   4304 neqn

  0  74415                     exece:return   4305 nroff

  0  74415                     exece:return   4306 sh

  0  74415                     exece:return   4308 sh

[...]
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Default Variables

• Numerous predefined variables can be used, eg:
> pid, tid Process ID, Thread ID
> timestamp Nanosecond timestamp since boot
> probefunc Probe function name (3rd field)
> execname Process name
> arg0, ... Function arguments and return value
> errno Last syscall failure error code
> curpsinfo Struct contating current process info, eg,

          curpsinfo->pr_psargs – process + args

• Pointers and structs! DTrace can walk memory 
using C syntax, and has kernel types predefined.
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curthread

• curthread is a pointer to current kthread_t

   From here you can walk kernel memory and answer 
endless questions about OS internals.
• Eg, the current process user_t is,

   curthread->t_procp->p_user
• You might not ever use curthread, but it is good to 

know that you can. (And there are other ways to get 
inside the kernel). Opinion:

curthread is like the down staircase
in nethack, angband, moria, ...
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Variable Types

• DTrace supports the following variable types:
> Integers
> Structs
> Pointers
> Strings
> Associative arrays
> Aggregates

• Including types from /usr/include/sys, eg uint32_t.
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Aggregations

• A great feature of DTrace is to process data as it is 
captured, such as using aggregations.
• Eg, frequency counting syscalls:

@num is the aggregation variable, probefunc is the key, 
and count() is the aggregating function.

# dtrace -n 'syscall:::entry { @num[probefunc] = count(); }'

dtrace: description 'syscall:::entry ' matched 233 probes

^C

[...]

  writev                                                          170

  write                                                           257

  read                                                            896

  pollsys                                                         959

  ioctl                                                          1253
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Aggregating Functions

• These include:
> count() count events, useful for frequency counts
> sum(value) sum the value
> avg(value) average the value
> min(value) find the value minimum
> max(value) find the value maximum
> quantize(value) print power-2 distribution plots
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Quantize

• Very cool function, here we quantize write sizes:

• Here we see that ls processes usually write 
between 32 and 127 bytes. Makes sense?

# dtrace -n 'sysinfo:::writech { @dist[execname] = quantize(arg0); }'

dtrace: description 'sysinfo:::writech ' matched 4 probes

^C

[...]

  ls                                                

           value  ------------- Distribution ------------- count    

               4 |                                         0        

               8 |                                         2        

              16 |                                         0        

              32 |@@@@@@@@@@@@@@@@@@@                      118      

              64 |@@@@@@@@@@@@@@@@@@@@@                    127      

             128 |                                         0      

[...]
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ls -l

 

ls writes one line at a time, each around 80 chars long.

# ls -l /etc

dttotal 793

lrwxrwxrwx   1 root     root          12 Mar 21 03:28 TIMEZONE -> default/init

drwxr-xr-x   4 root     sys            6 Apr 16 06:59 X11

drwxr-xr-x   2 adm      adm            3 Mar 20 09:25 acct

drwxr-xr-x   3 root     root           3 Apr 16 23:11 ak

lrwxrwxrwx   1 root     root          12 Mar 21 03:28 aliases -> mail/aliases

drwxr-xr-x   5 root     sys            5 Feb 20 23:29 amd64

drwxr-xr-x   7 root     bin           18 Mar 20 09:20 apache

drwxr-xr-x   4 root     bin            7 Feb 20 23:12 apache2

drwxr-xr-x   2 root     sys            5 Feb 20 23:27 apoc

-rw-r--r--   1 root     bin         1012 Mar 20 09:33 auto_home

-rw-r--r--   1 root     bin         1066 Mar 20 09:33 auto_master

lrwxrwxrwx   1 root     root          16 Mar 21 03:28 autopush -> ../sbin/autopu

[...]
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Predicates

• DTrace predicates are used to filter probes, so that 
the action fires when a conditional is true.

probename /predicate/ { action }

• Eg, syscalls for processes called “bash”:
# dtrace -n 'syscall:::entry /execname == "bash"/ { @num[probefunc] = 
count(); }'

dtrace: description 'syscall:::entry ' matched 233 probes

^C

  exece                                                             2

[...]

  read                                                             29

  write                                                            31

  lwp_sigmask                                                      42

  sigaction                                                        62
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Scripting

• If your one-liners get too long, write scripts. Eg, 
bash-syscalls.d:

• Getting it running:

#!/usr/sbin/dtrace -s

syscall:::entry

/execname == "bash"/

{

        @num[probefunc] = count();

}

# chmod 755 bash-syscalls.d

# ./bash-syscalls.d

dtrace: script './bash-syscalls.d' matched 233 probes

[...]
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What's next:

• We just covered:
> What is DTrace
> What is DTrace for
> Who uses DTrace
> DTrace Essentials

• Next up is:
> Usage Features
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Measuring Time

• Access to high resolution timestamps is of particular 
use for performance analysis.
> timestamp time since boot in nanoseconds
> vtimestamp thread on-CPU timestamp

• Measuring these for application and operating 
system function calls will answer:
> timestamp where is the latency?
> vtimestamp why are the CPUs busy?
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Printing Stacks

• Printing user and kernel stack traces explains both 
why and the how something happened.
• Why is bash calling read()? Using ustack():
# dtrace -n 'syscall::read:entry /execname == "bash"/ { ustack(); }'

dtrace: description 'syscall::read:entry ' matched 1 probe

CPU     ID                    FUNCTION:NAME

  0  74314                       read:entry 

              libc.so.1`_read+0x7

              bash`rl_getc+0x22

              bash`rl_read_key+0xad

              bash`readline_internal_char+0x5f

              bash`0x80b1171

              bash`0x80b118c

              bash`readline+0x3a

[...] Ahh, readline()
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End of Intro

• DTrace is a big topic, but you don't need to know it 
all to get value from DTrace.
• To learn more, browse “DTrace Topics”, 

http://www.solarisinternals.com/dtrace.
     

Here you will find:
> A wiki version of this presentation
> The PDF for this presentation
> dozens of other DTrace Topics (eg, one-liners!)

• Also see the “Solaris Performance and Tools” book,
http://www.sun.com/books/catalog/solaris_perf_tools.xml

http://www.solarisinternals.com/dtrace
http://www.sun.com/books/catalog/solaris_perf_tools.xml
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Sampling

• DTrace isn't just about tracing events, DTrace can 
also sample at customized rates.
• Eg, sampling 5-level user stack traces from Xorg:
# dtrace -n 'profile-1001 /execname == "Xorg"/ { @[ustack(5)] = count(); }'

dtrace: description 'profile-1001 ' matched 1 probe

^C

              libfb.so`fbSolid+0x2c6

              libfb.so`fbFill+0xb8

              libfb.so`fbPolyFillRect+0x1d5

              nvidia_drv.so`0xfe09e87b

              Xorg`miColorRects+0x124

               41

              nvidia_drv.so`_nv000592X+0x3d

              0x1016c00

               87

nvidia was on-CPU
87 times
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See Also

• DTrace home:
http://www.opensolaris.org/os/community/dtrace
> Main site of links
> DTrace-discuss mailing list

• Team DTrace blogs:
> http://blogs.sun.com/bmc
> http://blogs.sun.com/mws
> http://blogs.sun.com/ahl

• DTraceToolkit:
> http://www.opensolaris.org/os/community/dtrace/dtracetoolkit

http://www.opensolaris.org/os/community/dtrace
http://blogs.sun.com/bmc
http://blogs.sun.com/mws
http://blogs.sun.com/ahl
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit
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dtrace:::END

Brendan Gregg
brendan@sun.com
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