
1

dtrace -n 'syscall:::entry { @[exe

dtrace: description 'syscall:::entry

^C

 iscsitgtd 1

 nscd 1

 operapluginclean 3

 screen-4.0.2 3

 devfsadm 4

 httpd 10

 sendmail 10

 xload 10

 evince 12

 operapluginwrapp 20

 xclock 20

 xntpd 25

 FvwmIconMan 32

 fmd 81

 FvwmPager 170

 dtrace 432

 gnome-terminal 581

 fvwm2 1045

 x64 1833

 akd 2574

 opera 2923

 Xorg 4723

 soffice.bin 5037

DTrace Topics:
Introduction

Brendan Gregg
Sun Microsystems
April 2007

1

2

DTrace Topics: Introduction

• This presentation is an introduction to DTrace, and
is part of the “DTrace Topics” collection.
> Difficulty:
> Audience: Everyone

• These slides cover:
> What is DTrace
> What is DTrace for
> Who uses DTrace
> DTrace Essentials
> Usage Features

3

What is DTrace

• DTrace is a dynamic troubleshooting and analysis
tool first introduced in the Solaris 10 and
OpenSolaris operating systems.
• DTrace is many things, in particular:
> A tool
> A programming language interpreter
> An instrumentation framework

• DTrace provides observability across the entire
software stack from one tool. This allows you to
examine software execution like never before.

4

DTrace example #1

• Tracing new processes system-wide,

System calls are only one layer of the software stack.

dtrace -n 'syscall::exece:return { trace(execname); }'

dtrace: description 'syscall::exece:return ' matched 1 probe

CPU ID FUNCTION:NAME

 0 76044 exece:return man

 0 76044 exece:return sh

 0 76044 exece:return neqn

 0 76044 exece:return tbl

 0 76044 exece:return nroff

 0 76044 exece:return col

 0 76044 exece:return sh

 0 76044 exece:return mv

 0 76044 exece:return sh

 0 76044 exece:return more

5

The Entire Software Stack

• How did you analyze these?

Kernel
Memory
allocation SchedulerDevice Drivers

Syscall Interface

Libraries

User Executable

Dynamic Languages

Hardware

Examples:

Java, JavaScript, ...

/usr/bin/*

/usr/lib/*

VFS, DNLC, UFS,
ZFS, TCP, IP, ...
sd, st, hme, eri, ...

man -s2

disk data controller

File Systems

6

The Entire Software Stack

• It was possible, but difficult:

Kernel
Memory
allocation SchedulerDevice Drivers

Syscall Interface

Libraries

User Executable

Dynamic Languages

Hardware

Previously:

debuggers

truss -ua.out

apptrace, sotruss

prex; tnf*
lockstat
mdb

truss

kstat, PICs, guesswork

File Systems

7

The Entire Software Stack

• DTrace is all seeing:

Kernel
Memory
allocation SchedulerDevice Drivers

Syscall Interface

Libraries

User Executable

Dynamic Languages

Hardware

DTrace visibility:

Yes, with providers

Yes

Yes

Yes

Yes

No. Indirectly, yes

File Systems

8

What DTrace is like

• DTrace has the combined capabilities of numerous
previous tools and more:

Plus a programming language similar to C and awk.

Tool Capability

 truss -ua.out tracing user functions

 apptrace tracing library calls

 truss tracing system calls

 prex; tnf* tracing some kernel functions

 lockstat profiling the kernel

 mdb -k accessing kernel VM

 mdb -p accessing process VM

9

Syscall Example

• Using truss:

$ truss date

execve("/usr/bin/date", 0x08047C9C, 0x08047CA4) argc = 1

resolvepath("/usr/lib/ld.so.1", "/lib/ld.so.1", 1023) = 12

resolvepath("/usr/bin/date", "/usr/bin/date", 1023) = 13

xstat(2, "/usr/bin/date", 0x08047A58) = 0

open("/var/ld/ld.config", O_RDONLY) = 3

fxstat(2, 3, 0x08047988) = 0

mmap(0x00000000, 152, PROT_READ, MAP_SHARED, 3, 0) = 0xFEFB0000

close(3) = 0

mmap(0x00000000, 4096, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_ANON, -1

sysconfig(_CONFIG_PAGESIZE) = 4096

[...]

Only examine 1 process

Output is
limited to
provided
options

truss slows down the target

10

Syscall Example

• Using DTrace:

dtrace -n 'syscall:::entry { printf("%16s %x %x", execname, arg0, arg1); }'

dtrace: description 'syscall:::entry ' matched 233 probes

CPU ID FUNCTION:NAME

 1 75943 read:entry Xorg f 8047130

 1 76211 setitimer:entry Xorg 0 8047610

 1 76143 writev:entry Xorg 22 80477f8

 1 76255 pollsys:entry Xorg 8046da0 1a

 1 75943 read:entry Xorg 22 85121b0

 1 76035 ioctl:entry soffice.bin 6 5301

 1 76035 ioctl:entry soffice.bin 6 5301

 1 76255 pollsys:entry soffice.bin 8047530 2

[...]

You choose the output

Watch every processMinimum performance cost

11

What is DTrace for

• Troubleshooting software bugs
> Proving what the problem is, and isn't.
> Measuring the magnitude of the problem.

• Detailed observability
> Observing devices, such as disk or network activity.
> Observing applications, whether they are from Solaris,

3rd party, or in-house.

• Capturing profiling data for performance analysis
> If there is latency somewhere, DTrace can find it

12

What isn't DTrace

• DTrace isn't a replacement for kstat or SMNP
> kstat already provides inexpensive long term monitoring.

• DTrace isn't sentient, it needs to borrow your brain
to do the thinking
• DTrace isn't “dTrace”

13

Who is DTrace for

• Application Developers
> Fetch in-flight profiling data without restarting the apps,

even on customer production servers.
> Detailed visibility of all the functions that they wrote, and

the rest of the software stack.
> Add static probes as a stable debug interface.

• Application Support
> Provides a comprehensive insight into application

behavior.
> Analyze faults and root-cause performance issues.
> Prove where issues are, and measure their magnitude.

14

Who is DTrace for

• System Administrators
> Troubleshoot, analyze, investigate where never before.
> See more of your system - fills in many observability

gaps.

• Database Administrators
> Analyze throughput performance issues across all

system components.

• Security Administrators
> Customized short-term auditing
> Malware deciphering

15

Who is DTrace for

• Kernel Engineers
> Fetch kernel trace data from almost every function.
> Function arguments are auto-casted providing access to

all struct members.
> Fetch nanosecond timestamps for function execution.
> Troubleshoot device drivers, including during boot.
> Add statically defined trace points for debugging.

16

How to use DTrace

• DTrace can be used by either:
> Running prewritten one-liners and scripts

– DTrace one-liners are easy to use and ofter useful,
http://www.solarisinternals.com/dtrace

– The DtraceToolkit contains over 100 scripts ready to run,
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit

> Writing your own one-liners and scripts
– Encouraged – the possibilities are endless
– It helps to know C
– It can help to know operating system fundamentals

http://www.solarisinternals.com/dtrace
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit

17

DTrace wins

• Finding unnecessary work
> Having deep visibility often finds work being performed

that isn't needed. Eliminating these can produce the
biggest DTrace wins – 2x, 20x, etc.

• Solving performance issues
> Being able to measure where the latencies are, and

show what their costs are. These can produce typical
performance wins – 5%, 10%, etc.

18

DTrace wins

• Finding bugs
> Many bugs are found though static debug frameworks;

DTrace is a dynamic framework that allows custom and
comprehensive debug info to be fetched when needed.

• Proving performance issues
> Many valuable DTrace wins have no immediate percent

improvement, they are about gathering evidence to
prove the existence and magnitude of issues.

19

Example scenario: The past

• Take a performance issue on a complex customer
system,

• With previous observability tools, customers could
often find problems but not take the measurements
needed to prove that they found the problem.
> What is the latency cost for this issue? As a percent?

Customer:
“Why is our system slow?”

20

Example scenario: The past

• The “blame wheel”

Application Vendor:
“The real problem
 may be the database.”

Database Vendor:
“The real problem
 may be the OS.”

OS Vendor:
“The real problem may be the application.”

21

Example scenario: The past

• The lack of proof can mean stalemate.

Customer:
“I think I've found the issue
 in the application code.”

Application Vendor:
“That issue is costly to fix.
 We are happy to fix it, so long as
 you can prove that this is the issue.”

22

Example scenario: The future
A happy ending

• With DTrace, all players can examine all of the
software themselves.

– Example: “80% of the average transaction time is spent in the
application waiting for user-level locks.”

Customer:
“I measured the problem,
 it is in the application.”

Application Vendor:
“I'd better fix that right away.”

23

Example scenario: The future
An alternate happy ending for application vendors

– Example: “80% of our average transaction time is consumed by
a bug in libc.”

OS Vendor:
“We'd better fix that right away.”

Application Vendor:
“We measured the problem
 and found it was in the OS.”

24

Answers to initial questions

• DTrace is not available for Solaris 9.
• You need to be root, or have the correct privileges,

to run /usr/sbin/dtrace.
• There is a GUI called chime.
• DTrace is safe for production use, provided you

don't deliberately try to cause harm.
• DTrace has low impact when in use, and zero

impact when not.

25

What's next:

• We just covered:
> What is DTrace
> What is DTrace for
> Who uses DTrace

• Next up is:
> DTrace Essentials
> Usage Features

26

Terminology

• Example #1

dtrace -n 'syscall::exece:return { trace(execname); }'

dtrace: description 'syscall::exece:return ' matched 1 probe

CPU ID FUNCTION:NAME

 0 76044 exece:return man

 0 76044 exece:return sh

 0 76044 exece:return neqn

 0 76044 exece:return tbl

 0 76044 exece:return nroff

[...]

consumer probe action

27

Consumer

• Consumers of libdtrace(3LIB),
dtrace command line and scripting interface
lockstat kernel lock statistics
plockstat user-level lock statistics
intrstat run-time interrupt statistics

• libdtrace is currently a private interface and not to
be used directly (nor is there any great reason to);
the supported interface is dtrace(1M).
> NOTE: You are still encouraged to use libkstat(3LIB) and

proc(4) directly, rather than wrapping /usr/bin consumers.

28

Privileges

• Non-root users need certain DTrace privileges to be
able to use DTrace.
• These privileges are from the Solaris 10 “Least

Privilege” feature.

$ id

uid=1001(user1) gid=1(other)

$ /usr/sbin/dtrace -n 'syscall::exece:return'

dtrace: failed to initialize dtrace: DTrace requires additional privileges

29

Probes

• Data is generated from instrumentation points called
“probes”.
• DTrace provides thousands of probes.
• Probe examples:

Probe Name Description
syscall::read:entry A read() syscall began
proc:::exec-success A process created successfully
io:::start An I/O was issued (disk/vol/NFS)
io:::done An I/O completed

30

Probe Names

• Probe names are a four-tuple:

> Provider A library of related probes.
> Module The module the function belongs to,

either a kernel module or user segment.
> Function The function name that contains the probe.
> Name The name of the probe.

syscall::exece:return

Provider Module Function Name

31

Listing Probes

• dtrace -l lists all currently available probes that
you have privilege to see, with one probe per line:

• Here the root user sees 69,879 available probes.
• The probe count changes – it is dynamic (DTrace).

dtrace -l

 ID PROVIDER MODULE FUNCTION NAME

 1 dtrace BEGIN

 2 dtrace END

 3 dtrace ERROR

 4 sched FX fx_yield schedctl-yi

[...]

dtrace -l | wc -l

 69880

32

Tracing Probes

• dtrace -n takes a probe name and enables tracing:

• The default output contains:
– CPU CPU id that event occured on (if this

changes, the output may be shuffled)
– ID DTrace probe id
– FUNCTION:NAME Part of the probe name

dtrace -n syscall::exece:return

dtrace: description 'syscall::exece:return' matched 1 probe

CPU ID FUNCTION:NAME

 0 76044 exece:return

 0 76044 exece:return

^C

33

Providers

• Examples of providers:

Provider Description
syscall system call entries and returns
proc process and thread events
sched kernel scheduling events
sysinfo system statistic events
vminfo virtual memory events
io system I/O events
profile fixed rate sampling
pid user-level tracing
fbt raw kernel tracing

34

Providers

• Example of probes:

Provider Example probe
syscall syscall::read:entry
proc proc:::exec-success
sched sched:::on-cpu
sysinfo sysinfo:::readch
vminfo vminfo:::maj_fault
io io:::start
profile profile:::profile-1000hz
pid pid172:libc:fopen:entry
 pid172:a.out:main:entry
fbt fbt::bdev_strategy:entry

35

Providers

• Providers are documented in the DTrace Guide, as
separate chapters.
• Providers are dynamic, the number of available

probes can vary.
• Some providers are “unstable interface”, such as
fbt and sdt.
> This means that their probes, while useful, may vary in

name and arguments between Solaris versions.
> Try to use stable providers instead (if possible).

36

Provider Documentation

• Some providers assume a little background
knowledge, other providers assume a lot. Knowing
where to find supporting documentation is
important.
• Where do you find documentation on:
> Syscalls?
> User Libraries?
> Application Code?
> Kernel functions?

37

Provider Documentation

• Additional documentation may be found here:

Target Provider Additional Docs
syscalls syscall man(2)
libraries pid:lib* man(3C)
app code pid:a.out source code?
raw kernel fbt Solaris Internals 2nd Ed,

http://cvs.opensolaris.org

http://cvs.opensolaris.org/

38

Actions

• When a probe fires, an action executes.
• Actions are written in the D programming language.
• Actions can:
> print output
> save data to variables, and perform calculations
> walk kernel or process memory

• With destruction actions allowed, actions can:
> raise signals on processes
> execute shell commands
> write to some areas of memory

39

trace() Example

• The trace() action accepts one argument and prints
it when the probe fired.

dtrace -n 'syscall::exece:return { trace(execname); }'

dtrace: description 'syscall::exece:return ' matched 1 probe

CPU ID FUNCTION:NAME

 0 76044 exece:return man

 0 76044 exece:return sh

 0 76044 exece:return neqn

 0 76044 exece:return tbl

 0 76044 exece:return nroff

 0 76044 exece:return col

[...]

40

printf() Example

• DTrace ships with a powerful printf(), to print
formatted output.

dtrace -n 'syscall::exece:return { printf("%6d %s\n", pid, execname); }'

dtrace: description 'syscall::exece:return ' matched 1 probe

CPU ID FUNCTION:NAME

 0 74415 exece:return 4301 sh

 0 74415 exece:return 4304 neqn

 0 74415 exece:return 4305 nroff

 0 74415 exece:return 4306 sh

 0 74415 exece:return 4308 sh

[...]

41

Default Variables

• Numerous predefined variables can be used, eg:
> pid, tid Process ID, Thread ID
> timestamp Nanosecond timestamp since boot
> probefunc Probe function name (3rd field)
> execname Process name
> arg0, ... Function arguments and return value
> errno Last syscall failure error code
> curpsinfo Struct contating current process info, eg,

 curpsinfo->pr_psargs – process + args

• Pointers and structs! DTrace can walk memory
using C syntax, and has kernel types predefined.

42

curthread

• curthread is a pointer to current kthread_t

 From here you can walk kernel memory and answer
endless questions about OS internals.
• Eg, the current process user_t is,

 curthread->t_procp->p_user
• You might not ever use curthread, but it is good to

know that you can. (And there are other ways to get
inside the kernel). Opinion:

curthread is like the down staircase
in nethack, angband, moria, ...

43

Variable Types

• DTrace supports the following variable types:
> Integers
> Structs
> Pointers
> Strings
> Associative arrays
> Aggregates

• Including types from /usr/include/sys, eg uint32_t.

44

Aggregations

• A great feature of DTrace is to process data as it is
captured, such as using aggregations.
• Eg, frequency counting syscalls:

@num is the aggregation variable, probefunc is the key,
and count() is the aggregating function.

dtrace -n 'syscall:::entry { @num[probefunc] = count(); }'

dtrace: description 'syscall:::entry ' matched 233 probes

^C

[...]

 writev 170

 write 257

 read 896

 pollsys 959

 ioctl 1253

45

Aggregating Functions

• These include:
> count() count events, useful for frequency counts
> sum(value) sum the value
> avg(value) average the value
> min(value) find the value minimum
> max(value) find the value maximum
> quantize(value) print power-2 distribution plots

46

Quantize

• Very cool function, here we quantize write sizes:

• Here we see that ls processes usually write
between 32 and 127 bytes. Makes sense?

dtrace -n 'sysinfo:::writech { @dist[execname] = quantize(arg0); }'

dtrace: description 'sysinfo:::writech ' matched 4 probes

^C

[...]

 ls

 value ------------- Distribution ------------- count

 4 | 0

 8 | 2

 16 | 0

 32 |@@@@@@@@@@@@@@@@@@@ 118

 64 |@@@@@@@@@@@@@@@@@@@@@ 127

 128 | 0

[...]

47

ls -l

ls writes one line at a time, each around 80 chars long.

ls -l /etc

dttotal 793

lrwxrwxrwx 1 root root 12 Mar 21 03:28 TIMEZONE -> default/init

drwxr-xr-x 4 root sys 6 Apr 16 06:59 X11

drwxr-xr-x 2 adm adm 3 Mar 20 09:25 acct

drwxr-xr-x 3 root root 3 Apr 16 23:11 ak

lrwxrwxrwx 1 root root 12 Mar 21 03:28 aliases -> mail/aliases

drwxr-xr-x 5 root sys 5 Feb 20 23:29 amd64

drwxr-xr-x 7 root bin 18 Mar 20 09:20 apache

drwxr-xr-x 4 root bin 7 Feb 20 23:12 apache2

drwxr-xr-x 2 root sys 5 Feb 20 23:27 apoc

-rw-r--r-- 1 root bin 1012 Mar 20 09:33 auto_home

-rw-r--r-- 1 root bin 1066 Mar 20 09:33 auto_master

lrwxrwxrwx 1 root root 16 Mar 21 03:28 autopush -> ../sbin/autopu

[...]

48

Predicates

• DTrace predicates are used to filter probes, so that
the action fires when a conditional is true.

probename /predicate/ { action }

• Eg, syscalls for processes called “bash”:
dtrace -n 'syscall:::entry /execname == "bash"/ { @num[probefunc] =
count(); }'

dtrace: description 'syscall:::entry ' matched 233 probes

^C

 exece 2

[...]

 read 29

 write 31

 lwp_sigmask 42

 sigaction 62

49

Scripting

• If your one-liners get too long, write scripts. Eg,
bash-syscalls.d:

• Getting it running:

#!/usr/sbin/dtrace -s

syscall:::entry

/execname == "bash"/

{

 @num[probefunc] = count();

}

chmod 755 bash-syscalls.d

./bash-syscalls.d

dtrace: script './bash-syscalls.d' matched 233 probes

[...]

50

What's next:

• We just covered:
> What is DTrace
> What is DTrace for
> Who uses DTrace
> DTrace Essentials

• Next up is:
> Usage Features

51

Measuring Time

• Access to high resolution timestamps is of particular
use for performance analysis.
> timestamp time since boot in nanoseconds
> vtimestamp thread on-CPU timestamp

• Measuring these for application and operating
system function calls will answer:
> timestamp where is the latency?
> vtimestamp why are the CPUs busy?

52

Printing Stacks

• Printing user and kernel stack traces explains both
why and the how something happened.
• Why is bash calling read()? Using ustack():
dtrace -n 'syscall::read:entry /execname == "bash"/ { ustack(); }'

dtrace: description 'syscall::read:entry ' matched 1 probe

CPU ID FUNCTION:NAME

 0 74314 read:entry

 libc.so.1`_read+0x7

 bash`rl_getc+0x22

 bash`rl_read_key+0xad

 bash`readline_internal_char+0x5f

 bash`0x80b1171

 bash`0x80b118c

 bash`readline+0x3a

[...] Ahh, readline()

53

End of Intro

• DTrace is a big topic, but you don't need to know it
all to get value from DTrace.
• To learn more, browse “DTrace Topics”,

http://www.solarisinternals.com/dtrace.

Here you will find:
> A wiki version of this presentation
> The PDF for this presentation
> dozens of other DTrace Topics (eg, one-liners!)

• Also see the “Solaris Performance and Tools” book,
http://www.sun.com/books/catalog/solaris_perf_tools.xml

http://www.solarisinternals.com/dtrace
http://www.sun.com/books/catalog/solaris_perf_tools.xml

54

Sampling

• DTrace isn't just about tracing events, DTrace can
also sample at customized rates.
• Eg, sampling 5-level user stack traces from Xorg:
dtrace -n 'profile-1001 /execname == "Xorg"/ { @[ustack(5)] = count(); }'

dtrace: description 'profile-1001 ' matched 1 probe

^C

 libfb.so`fbSolid+0x2c6

 libfb.so`fbFill+0xb8

 libfb.so`fbPolyFillRect+0x1d5

 nvidia_drv.so`0xfe09e87b

 Xorg`miColorRects+0x124

 41

 nvidia_drv.so`_nv000592X+0x3d

 0x1016c00

 87

nvidia was on-CPU
87 times

55

See Also

• DTrace home:
http://www.opensolaris.org/os/community/dtrace
> Main site of links
> DTrace-discuss mailing list

• Team DTrace blogs:
> http://blogs.sun.com/bmc
> http://blogs.sun.com/mws
> http://blogs.sun.com/ahl

• DTraceToolkit:
> http://www.opensolaris.org/os/community/dtrace/dtracetoolkit

http://www.opensolaris.org/os/community/dtrace
http://blogs.sun.com/bmc
http://blogs.sun.com/mws
http://blogs.sun.com/ahl
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit

56

dtrace:::END

Brendan Gregg
brendan@sun.com

56

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

